Coupling of a slow and a fast oscillator can generate bursting

A general mechanism underlying bursting is proposed and described. It consists of two coupled nonlinear oscillators with different frequencies, where the slower oscillator alternatively switches the faster one on and off. This mechanism is shown to work in an extended Bonhoefer-van der Pol oscillator as well as in a modified version of the Hodgkin-Huxley equations.

[1]  Theodosios Pavlidis,et al.  Biological Oscillators: Their Mathematical Analysis , 1973 .

[2]  A. Holden,et al.  Ionic channel density of excitable membranes can act as a bifurcation parameter , 1981, Biological cybernetics.

[3]  C. Game BVP models: An adjustment to express a mechanism of inactivation , 1982, Biological Cybernetics.

[4]  J. Stoer Einfiihrung in die numerische mathematik i , 1972 .

[5]  H. Pinsker Aplysia bursting neurons as endogenous oscillators. I. Phase-response curves for pulsed inhibitory synaptic input. , 1977, Journal of neurophysiology.

[6]  E. N. Best,et al.  Null space in the Hodgkin-Huxley Equations. A critical test. , 1979, Biophysical journal.

[7]  G. Benettin,et al.  Kolmogorov entropy of a dynamical system with an increasing number of degrees of freedom , 1979 .

[8]  R. Plant,et al.  The effects of calcium++ on bursting neurons. A modeling study. , 1978, Biophysical journal.

[9]  H. Schwetlick,et al.  Stoer, J. / Bulirsch, R., Einführung in die Numerische Mathematik II, IX, 286 S., 1973. DM 14,80, US $ 5.50. Berlin-Heidelberg-New York. Springer-Verlag , 1978 .

[10]  M. Kim,et al.  Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxley equations. , 1976, Biophysical journal.

[11]  Richard E. Plant,et al.  On the mechanism underlying bursting in the Aplysia abdominal ganglion R15 cell , 1975 .

[12]  C. Antzelevitch,et al.  Phase resetting and annihilation of pacemaker activity in cardiac tissue. , 1979, Science.

[13]  R. Plant,et al.  Bifurcation and resonance in a model for bursting nerve cells , 1981, Journal of mathematical biology.

[14]  A. Winfree The geometry of biological time , 1991 .

[15]  J. Keizer,et al.  Minimal model for membrane oscillations in the pancreatic beta-cell. , 1983, Biophysical journal.

[16]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[17]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[18]  I. Shimada,et al.  A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems , 1979 .