Coupling of a slow and a fast oscillator can generate bursting
暂无分享,去创建一个
[1] Theodosios Pavlidis,et al. Biological Oscillators: Their Mathematical Analysis , 1973 .
[2] A. Holden,et al. Ionic channel density of excitable membranes can act as a bifurcation parameter , 1981, Biological cybernetics.
[3] C. Game. BVP models: An adjustment to express a mechanism of inactivation , 1982, Biological Cybernetics.
[4] J. Stoer. Einfiihrung in die numerische mathematik i , 1972 .
[5] H. Pinsker. Aplysia bursting neurons as endogenous oscillators. I. Phase-response curves for pulsed inhibitory synaptic input. , 1977, Journal of neurophysiology.
[6] E. N. Best,et al. Null space in the Hodgkin-Huxley Equations. A critical test. , 1979, Biophysical journal.
[7] G. Benettin,et al. Kolmogorov entropy of a dynamical system with an increasing number of degrees of freedom , 1979 .
[8] R. Plant,et al. The effects of calcium++ on bursting neurons. A modeling study. , 1978, Biophysical journal.
[9] H. Schwetlick,et al. Stoer, J. / Bulirsch, R., Einführung in die Numerische Mathematik II, IX, 286 S., 1973. DM 14,80, US $ 5.50. Berlin-Heidelberg-New York. Springer-Verlag , 1978 .
[10] M. Kim,et al. Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxley equations. , 1976, Biophysical journal.
[11] Richard E. Plant,et al. On the mechanism underlying bursting in the Aplysia abdominal ganglion R15 cell , 1975 .
[12] C. Antzelevitch,et al. Phase resetting and annihilation of pacemaker activity in cardiac tissue. , 1979, Science.
[13] R. Plant,et al. Bifurcation and resonance in a model for bursting nerve cells , 1981, Journal of mathematical biology.
[14] A. Winfree. The geometry of biological time , 1991 .
[15] J. Keizer,et al. Minimal model for membrane oscillations in the pancreatic beta-cell. , 1983, Biophysical journal.
[16] A. Hodgkin,et al. A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.
[17] R. FitzHugh. Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.
[18] I. Shimada,et al. A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems , 1979 .