Robust synthesis for master-slave synchronization of Lur'e systems

In this paper a method for robust synthesis of full static-state error feedback and dynamic-output error feedback for master-slave synchronization of Lur'e systems is presented. Parameter mismatch between the systems is considered in the synchronization schemes. Sufficient conditions for uniform synchronization with a bound on the synchronization error are derived, based on a quadratic Lyapunov function. The matrix inequalities from the case without parameter mismatch between the Lur'e systems remain preserved, but an additional robustness criterion must be taken into account. The robustness criterion is based on an uncertainty relation between the synchronization error bound and the parameter mismatch. The robust synthesis method is illustrated on Chua's circuit with the double scroll. One observes that it is possible to synchronize the master-slave systems up to a relatively small error bound, even in the case of different qualitative behavior between the master and the uncontrolled slave system, such as limit cycles and stable equilibria.

[1]  Solomon Lefschetz,et al.  Stability by Liapunov's Direct Method With Applications , 1962 .

[2]  G. R. Walsh,et al.  Methods Of Optimization , 1976 .

[3]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[4]  Elijah Polak,et al.  Nondifferentiable optimization algorithm for designing control systems having singular value inequalities , 1982, Autom..

[5]  L. Chua,et al.  The double scroll family , 1986 .

[6]  R. Fletcher Practical Methods of Optimization , 1988 .

[7]  Maciejowsk Multivariable Feedback Design , 1989 .

[8]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[9]  Stephen P. Boyd,et al.  Linear controller design: limits of performance , 1991 .

[10]  Rabinder N Madan,et al.  Chua's Circuit: A Paradigm for Chaos , 1993, Chua's Circuit.

[11]  M. Hasler Synchronization principles and applications , 1994 .

[12]  Leon O. Chua,et al.  Chua's circuit 10 years later , 1994, Int. J. Circuit Theory Appl..

[13]  L. Chua,et al.  A UNIFIED FRAMEWORK FOR SYNCHRONIZATION AND CONTROL OF DYNAMICAL SYSTEMS , 1994 .

[14]  Johan A. K. Suykens,et al.  Artificial Neural Networks for Modeling and Control of Non-Linear Systems , 1995 .

[15]  J. Suykens,et al.  Nonlinear H/sub /spl infin// synchronization of Lur'e systems: dynamic output feedback case , 1997 .

[16]  J. Suykens,et al.  Robust nonlinear H/sub /spl infin// synchronization of chaotic Lur'e systems , 1997 .

[17]  L. Chua,et al.  Absolute Stability Theory and the Synchronization Problem , 1997 .

[18]  J. Suykens,et al.  Absolute stability theory and master-slave synchronization , 1997 .

[19]  J. Suykens,et al.  Nonlinear H Synchronization of Lur ’ e Systems : Dynamic Output Feedback Case , 1997 .

[20]  Johan A. K. Suykens,et al.  Robust Nonlinear H Synchronization of Chaotic Lur'e Systems , 1997 .

[21]  J. Suykens,et al.  Nonlinear H∞ Synchronization of Chaotic Lur'e Systems , 1997 .

[22]  J. Suykens,et al.  Master-slave synchronization using dynamic output feedback , 1997 .

[23]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.