Parallel Stochastic Newton Method
暂无分享,去创建一个
[1] Jorge Nocedal,et al. On the limited memory BFGS method for large scale optimization , 1989, Math. Program..
[2] Fuzhen Zhang. Matrix Theory: Basic Results and Techniques , 1999 .
[3] Samuel Williams,et al. Roofline: an insightful visual performance model for multicore architectures , 2009, CACM.
[4] Alexander J. Smola,et al. Parallelized Stochastic Gradient Descent , 2010, NIPS.
[5] Stephen J. Wright,et al. Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent , 2011, NIPS.
[6] Shai Shalev-Shwartz,et al. Stochastic dual coordinate ascent methods for regularized loss , 2012, J. Mach. Learn. Res..
[7] Lothar Reichel,et al. Tridiagonal Toeplitz matrices: properties and novel applications , 2013, Numer. Linear Algebra Appl..
[8] Peter Richtárik,et al. Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function , 2011, Mathematical Programming.
[9] Peter Richtárik,et al. Randomized Dual Coordinate Ascent with Arbitrary Sampling , 2014, ArXiv.
[10] Kimon Fountoulakis,et al. A Flexible Coordinate Descent Method for Big Data Applications , 2015 .
[11] Peter Richtárik,et al. Distributed Block Coordinate Descent for Minimizing Partially Separable Functions , 2014, 1406.0238.
[12] Andrea Montanari,et al. Convergence rates of sub-sampled Newton methods , 2015, NIPS.
[13] Peter Richtárik,et al. Accelerated, Parallel, and Proximal Coordinate Descent , 2013, SIAM J. Optim..
[14] Michael W. Mahoney,et al. Sub-Sampled Newton Methods I: Globally Convergent Algorithms , 2016, ArXiv.
[15] Martin Jaggi,et al. Primal-Dual Rates and Certificates , 2016, ICML.
[16] Robert M. Gower,et al. Stochastic Block BFGS: Squeezing More Curvature out of Data , 2016, ICML.
[17] Peter Richtárik,et al. SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization , 2015, ICML.
[18] Peter Richtárik,et al. Distributed Coordinate Descent Method for Learning with Big Data , 2013, J. Mach. Learn. Res..
[19] Michael W. Mahoney,et al. Sub-Sampled Newton Methods II: Local Convergence Rates , 2016, ArXiv.
[20] Peter Richtárik,et al. Coordinate descent with arbitrary sampling II: expected separable overapproximation , 2014, Optim. Methods Softw..
[21] Peter Richtárik,et al. On optimal probabilities in stochastic coordinate descent methods , 2013, Optim. Lett..
[22] Peter Richtárik,et al. Parallel coordinate descent methods for big data optimization , 2012, Mathematical Programming.
[23] Martin J. Wainwright,et al. Newton Sketch: A Near Linear-Time Optimization Algorithm with Linear-Quadratic Convergence , 2015, SIAM J. Optim..