Observations upon the evoked responses to natural vestibular stimulation.

Repetitive rotational stimuli simulating natural head movements have been applied to the study of the vestibular evoked response in normal subjects and 12 patients with complete loss of vestibular function. Special precautions were taken to eliminate all possible sources of artefacts, in particular, all eye movements were restrained by requiring the subject to fixate upon a target light attached to the rotating chair throughout the course of the test. With a stimulus of 2 sec duration the typical response took the form of a slow negative wave with a mean peak amplitude of approximately 24 microV and maximally recorded from the vertex. It was characteristically absent in the patient group. Occasionally, both in normal subjects and patients it was preceded by a long latency complex thought to be non-vestibular in origin. Tests carried out both in total darkness and in the light show a statistically significant increase in the potential in the latter condition indicating an influence of the optokinetic effect exerted by the visual surround. Further studies have explored the phase changes brought about by varying the amplitude and duration of the stimulus. These have revealed certain parallels in the results of recent animal experimental studies.