Doherty PAs for 5G Massive MIMO: Energy-Efficient Integrated DPA MMICs for Sub-6-GHz and mm-Wave 5G Massive MIMO Systems

To accommodate growing user demand for faster data rates and extensive connectivity, modern wireless communication systems must evolve to support a sharply increasing number of subscribers, all requesting service at the same time. This trend encourages the broad application of multiple input/multiple output (MIMO) systems. In fact, MIMO techniques can increase data rates, coverage of service areas, and communication reliability without additional RFs. In recent proposals for 5G systems, the required separate RF chains in massive MIMO RF front ends can reach up to 256, with bandwidths of up to 800 MHz per RF chain [1], [2]. Massive MIMO is a critical technology that helps significantly in increasing network capacity and spectral efficiency, while reducing wireless network interference, ultimately improving the end-user experience.

[1]  Robert W. Heath,et al.  An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems , 2015, IEEE Journal of Selected Topics in Signal Processing.

[2]  Q. Xue,et al.  Adaptively Biased 60-GHz Doherty Power Amplifier in 65-nm CMOS , 2017, IEEE Microwave and Wireless Components Letters.

[3]  L.E. Larson,et al.  A capacitance-compensation technique for improved linearity in CMOS class-AB power amplifiers , 2004, IEEE Journal of Solid-State Circuits.

[4]  Sudipto Chakraborty,et al.  High-Efficiency E-Band Power Amplifiers and Transmitter Using Gate Capacitance Linearization in a 65-nm CMOS Process , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.

[5]  Shuangfeng Han,et al.  Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G , 2015, IEEE Communications Magazine.

[6]  V. Camarchia,et al.  7 GHz MMIC GaN Doherty Power Amplifier With 47% Efficiency at 7 dB Output Back-Off , 2013, IEEE Microwave and Wireless Components Letters.

[7]  Mariano Ercoli,et al.  3.5-GHz ultra-compact GaN class-E integrated Doherty MMIC PA for 5G massive-MIMO base station applications , 2017, 2017 12th European Microwave Integrated Circuits Conference (EuMIC).

[8]  P. Reynaert,et al.  A 60-GHz Power Amplifier With AM–PM Distortion Cancellation in 40-nm CMOS , 2016, IEEE Transactions on Microwave Theory and Techniques.

[9]  Keigo Nakatani,et al.  A Ka-Band High Efficiency Doherty Power Amplifier MMIC using GaN-HEMT for 5G Application , 2018, 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G).

[10]  Christian Fager,et al.  A GaN MMIC Modified Doherty PA With Large Bandwidth and Reconfigurable Efficiency , 2014, IEEE Transactions on Microwave Theory and Techniques.

[11]  K. Yamauchi,et al.  A microwave miniaturized linearizer using a parallel diode , 1997, 1997 IEEE MTT-S International Microwave Symposium Digest.

[12]  Theodore S. Rappaport,et al.  Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! , 2013, IEEE Access.

[13]  P. Colantonio,et al.  GaN-MMIC Doherty power amplifier with integrated reconfigurable input network for microwave backhaul applications , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[14]  Zhouyue Pi,et al.  An introduction to millimeter-wave mobile broadband systems , 2011, IEEE Communications Magazine.

[15]  Patrick Reynaert,et al.  14.3 A Push-Pull mm-Wave power amplifier with <0.8° AM-PM distortion in 40nm CMOS , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[16]  Franco Giannini,et al.  15% bandwidth 7 GHz GaN‐MMIC Doherty amplifier with enhanced auxiliary chain , 2014 .

[17]  Kyungwhoon Cheun,et al.  Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results , 2014, IEEE Communications Magazine.

[18]  Zhenghe Feng,et al.  An Energy-Efficient $Ka$ / $Q$ Dual-Band Power Amplifier MMIC in 0.1- $\mu$ m GaAs Pr , 2018, IEEE Microwave and Wireless Components Letters.

[19]  Zhenghe Feng,et al.  A Compact and Broadband Ka-band Asymmetrical GaAs Doherty Power Amplifier MMIC for 5G Communications , 2018, 2018 IEEE/MTT-S International Microwave Symposium - IMS.

[20]  Bumman Kim,et al.  Highly linear CMOS power amplifier for mm-wave applications , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[21]  Marc Camiade,et al.  Single and dual input packaged 5.5–6.5GHz, 20W, Quasi-MMIC GaN-HEMT Doherty Power Amplifier , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).

[22]  Anh-Vu Pham,et al.  A Doherty Amplifier With Modified Load Modulation Scheme Based on Load–Pull Data , 2018, IEEE Transactions on Microwave Theory and Techniques.

[23]  Patrick Reynaert,et al.  A 32 GHz 20 dBm-PSAT transformer-based Doherty power amplifier for multi-Gb/s 5G applications in 28 nm bulk CMOS , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[24]  Narek Rostomyan,et al.  28 GHz Doherty Power Amplifier in CMOS SOI With 28% Back-Off PAE , 2018, IEEE Microwave and Wireless Components Letters.

[25]  Fei Wang,et al.  2.1 A 28GHz/37GHz/39GHz multiband linear Doherty power amplifier for 5G massive MIMO applications , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[26]  Erik G. Larsson,et al.  Massive MIMO for next generation wireless systems , 2013, IEEE Communications Magazine.

[27]  Fredrik Tufvesson,et al.  Massive MIMO Performance Evaluation Based on Measured Propagation Data , 2014, IEEE Transactions on Wireless Communications.

[28]  Min-Su Kim,et al.  A Highly Linear Two-Stage Amplifier Integrated Circuit Using InGaP/GaAs HBT , 2010, IEEE Journal of Solid-State Circuits.

[29]  Christian Fager,et al.  Efficient Millimeter Wave Doherty PA Design Based on a Low-Loss Combiner Synthesis Technique , 2017, IEEE Microwave and Wireless Components Letters.

[30]  D. Kuylenstierna,et al.  A Wideband and Compact GaN MMIC Doherty Amplifier for Microwave Link Applications , 2013, IEEE Transactions on Microwave Theory and Techniques.

[31]  Jeng-Han Tsai,et al.  Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifiers , 2006, IEEE Transactions on Microwave Theory and Techniques.

[32]  Anh-Vu Pham,et al.  An Ultra Compact Watt-Level Ka-Band Stacked-FET Power Amplifier , 2016, IEEE Microwave and Wireless Components Letters.

[33]  Dong Chen,et al.  A V-Band Doherty Power Amplifier Based on Voltage Combination and Balance Compensation Marchand Balun , 2018, IEEE Access.

[34]  P. Pande,et al.  A 40% PAE Frequency-Reconfigurable CMOS Power Amplifier With Tunable Gate–Drain Neutralization for 28-GHz 5G Radios , 2018, IEEE Transactions on Microwave Theory and Techniques.

[35]  Sherif Shakib,et al.  A Highly Efficient and Linear Power Amplifier for 28-GHz 5G Phased Array Radios in 28-nm CMOS , 2016, IEEE Journal of Solid-State Circuits.

[36]  Emil Björnson,et al.  Massive MIMO in Sub-6 GHz and mmWave: Physical, Practical, and Use-Case Differences , 2018, IEEE Wireless Communications.

[37]  Theodore S. Rappaport,et al.  Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design , 2015, IEEE Transactions on Communications.

[38]  Athanasios V. Vasilakos,et al.  A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges , 2015, Wireless Networks.

[39]  Anh-Vu Pham,et al.  A compact 29% PAE at 6 dB power back-off E-mode GaAs pHEMT MMIC Doherty power amplifier at Ka-band , 2017, 2017 IEEE MTT-S International Microwave Symposium (IMS).

[40]  Songcheol Hong,et al.  A 5-GHz WLAN RF CMOS Power Amplifier With a Parallel-Cascoded Configuration and an Active Feedback Linearizer , 2017, IEEE Transactions on Microwave Theory and Techniques.

[41]  Franco Giannini,et al.  High-Efficiency 7 GHz Doherty GaN MMIC Power Amplifiers for Microwave Backhaul Radio Links , 2013, IEEE Transactions on Electron Devices.

[42]  Songbai He,et al.  Design of Broadband Modified Class-J Doherty Power Amplifier With Specific Second Harmonic Terminations , 2018, IEEE Access.

[43]  Robert W. Heath,et al.  Energy-Efficient Hybrid Analog and Digital Precoding for MmWave MIMO Systems With Large Antenna Arrays , 2015, IEEE Journal on Selected Areas in Communications.

[44]  Patrick Reynaert,et al.  Transformer-Based Doherty Power Amplifiers for mm-Wave Applications in 40-nm CMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[45]  T. Yoshimasu,et al.  An HBT MMIC power amplifier with an integrated diode linearizer for low-voltage portable phone applications , 1998, IEEE J. Solid State Circuits.

[46]  D. Gustafsson,et al.  A packaged hybrid Doherty PA for microwave links , 2016, 2016 11th European Microwave Integrated Circuits Conference (EuMIC).

[47]  Hua Wang,et al.  A 62-to-68GHz linear 6Gb/s 64QAM CMOS doherty radiator with 27.5%/20.1% PAE at peak/6dB-back-off output power leveraging high-efficiency multi-feed antenna-based active load modulation , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[48]  Bumman Kim,et al.  Linearization of CMOS Cascode Power Amplifiers Through Adaptive Bias Control , 2013, IEEE Transactions on Microwave Theory and Techniques.

[49]  Paolo Colantonio,et al.  A High Efficiency and Low Distortion 6 W GaN MMIC Doherty Amplifier for 7 GHz Radio Links , 2017, IEEE Microwave and Wireless Components Letters.

[50]  Hua Wang,et al.  A Continuous-Mode 23.5-41GHz Hybrid Class-F/F-l Power Amplifier with 46% Peak PAE for 5G Massive MIMO Applications , 2018, 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[51]  Patrick Reynaert,et al.  Highly Linear Fully Integrated Wideband RF PA for LTE-Advanced in 180-nm SOI , 2015, IEEE Transactions on Microwave Theory and Techniques.

[52]  Franco Giannini,et al.  A Design Approach for Two Stages GaN MMIC PAs With High Efficiency and Excellent Linearity , 2016, IEEE Microwave and Wireless Components Letters.

[53]  Shahriar Mirabbasi,et al.  A 42–46.4% PAE continuous class-F power amplifier with Cgd neutralization at 26–34 GHz in 65 nm CMOS for 5G applications , 2017, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[54]  G. Ghione,et al.  Linear GaN MMIC Combined Power Amplifiers for 7-GHz Microwave Backhaul , 2014, IEEE Transactions on Microwave Theory and Techniques.

[55]  Tao Jiang,et al.  A Design Strategy for AM/PM Compensation in GaN Doherty Power Amplifiers , 2017, IEEE Access.

[56]  Erik G. Larsson,et al.  Out-of-Band Radiation from Large Antenna Arrays , 2016, IEEE Communications Magazine.

[57]  Pawan Agarwal,et al.  A 28GHz 41%-PAE linear CMOS power amplifier using a transformer-based AM-PM distortion-correction technique for 5G phased arrays , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[58]  Youngoo Yang,et al.  A highly linear and efficient differential CMOS power amplifier with harmonic control , 2006, IEEE Journal of Solid-State Circuits.

[59]  Hongqi Tao,et al.  A 26 GHz Doherty power amplifier and a fully integrated 2×2 PA in 0.15μm GaN HEMT process for heterogeneous integration and 5G , 2018, 2018 IEEE MTT-S International Wireless Symposium (IWS).

[60]  Anh-Vu Pham,et al.  A 28-GHz Symmetrical Doherty Power Amplifier Using Stacked-FET Cells , 2018, IEEE Transactions on Microwave Theory and Techniques.

[61]  Songcheol Hong,et al.  A WLAN RF CMOS PA With Large-Signal MGTR Method , 2013, IEEE Transactions on Microwave Theory and Techniques.

[62]  Kun-You Lin,et al.  Phase-Delay Cold-FET Pre-Distortion Linearizer for Millimeter-Wave CMOS Power Amplifiers , 2013, IEEE Transactions on Microwave Theory and Techniques.

[63]  Jeng-Han Tsai,et al.  A 60 GHz CMOS Power Amplifier With Built-in Pre-Distortion Linearizer , 2011, IEEE Microwave and Wireless Components Letters.

[64]  Fredrik Tufvesson,et al.  Performance Characterization of a Real-Time Massive MIMO System With LOS Mobile Channels , 2017, IEEE Journal on Selected Areas in Communications.

[65]  Chao Lu,et al.  Linearization of CMOS Broadband Power Amplifiers Through Combined Multigated Transistors and Capacitance Compensation , 2007, IEEE Transactions on Microwave Theory and Techniques.

[66]  Bernd Geck,et al.  Design of a linearized and efficient doherty amplifier for C-band applications , 2017, 2017 12th European Microwave Integrated Circuits Conference (EuMIC).

[67]  Sanjay Raman,et al.  Linearity enhancement for GaN HEMT amplifier using parallel transistors with independent gate bias control , 2016, 2016 IEEE 17th Annual Wireless and Microwave Technology Conference (WAMICON).

[68]  Chirn Chye Boon,et al.  A Fully Integrated Class-J GaN MMIC Power Amplifier for 5-GHz WLAN 802.11ax Application , 2018, IEEE Microwave and Wireless Components Letters.

[69]  Kun-You Lin,et al.  A 20 GHz power amplifier with IM3 distortion cancellation by load-split derivative superposition , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[70]  Jonghoon Park,et al.  A Quad-Band CMOS Linear Power Amplifier for EDGE Applications Using an Anti-Phase Method to Enhance its Linearity , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[71]  Robert W. Heath,et al.  Asymptotic coverage and rate in massive MIMO networks , 2014, 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[72]  Kazutomi Mori,et al.  A microwave miniaturized linearizer using a parallel diode , 1997, IMS 1997.

[73]  Piero Angeletti,et al.  High-gain GaN doherty power amplifier for Ka-band satellite communications , 2018, 2018 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR).

[74]  Anh-Vu Pham,et al.  A Ka-Band doherty power amplifier with 25.1 dBm output power, 38% peak PAE and 27% back-off PAE , 2013, 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[75]  Tao Jiang,et al.  POLITECNICO DI TORINO Repository ISTITUZIONALE K-Band GaAs MMIC Doherty Power Amplifier for Microwave Radio With Optimized Driver / , 2022 .

[76]  Hui Gao,et al.  A Sub 6GHz Massive MIMO System for 5G New Radio , 2017, 2017 IEEE 85th Vehicular Technology Conference (VTC Spring).

[77]  Jonghoon Park,et al.  A CMOS Antiphase Power Amplifier With an MGTR Technique for Mobile Applications , 2017, IEEE Transactions on Microwave Theory and Techniques.

[78]  Brian A. Floyd,et al.  A 28-GHz SiGe BiCMOS PA With 32% Efficiency and 23-dBm Output Power , 2017, IEEE Journal of Solid-State Circuits.

[79]  C. F. Campbell,et al.  A K-Band 5W Doherty Amplifier MMIC Utilizing 0.15µm GaN on SiC HEMT Technology , 2012, 2012 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).