Thermoelectric performance of classical topological insulator nanowires

There is currently substantial effort being invested into creating efficient thermoelectric (TE) nanowires based on topological insulator (TI) chalcogenide-type materials. A key premise of these efforts is the assumption that the generally good TE properties that these materials exhibit in bulk form will translate into similarly good or even better TE performance of the same materials in nanowire form. Here, we calculate TE performance of TI nanowires based on Bi2Te3, Sb2Te3 and Bi2Se3 as a function of diameter and Fermi level. We show that the TE performance of TI nanowires does not derive from the properties of the bulk material in a straightforward way. For all investigated systems the competition between surface states and bulk channel causes a significant modification of the TE transport coefficients if the diameter is reduced into the sub 10 μm range. Key aspects are that the surface and bulk states are optimized at different Fermi levels or have different polarity as well as the high surface to volume ratio of the nanowires. This limits the maximum TE performance of TI nanowires and thus their application in efficient TE devices.

[1]  K. Nielsch,et al.  Resolving the Dirac cone on the surface of Bi2Te3 topological insulator nanowires by field-effect measurements , 2014, 1405.2036.

[2]  Yong Xu,et al.  Enhanced thermoelectric performance and anomalous seebeck effects in topological insulators. , 2014, Physical review letters.

[3]  I. Mertig,et al.  Signature of the topological surface state in the thermoelectric properties of Bi 2 Te 3 , 2013, 1312.4808.

[4]  Kornelius Nielsch,et al.  Thermoelectric power factor of ternary single-crystalline Sb2Te3- and Bi2Te3-based nanowires , 2013, Nanotechnology.

[5]  K. Nielsch,et al.  Surface state dominated transport in topological insulator Bi2Te3 nanowires , 2013 .

[6]  F. Beltram,et al.  Giant thermovoltage in single InAs nanowire field-effect transistors. , 2013, Nano letters.

[7]  K. Nielsch,et al.  Aharonov-Bohm oscillations and weak antilocalization in topological insulator Sb2Te3 nanowires , 2013 .

[8]  K. Nielsch,et al.  Thermoelectric transport and Hall measurements of low defect Sb2Te3 thin films grown by atomic layer deposition , 2013 .

[9]  Jie Xiang,et al.  Gate-modulated thermoelectric power factor of hole gas in Ge-Si core-shell nanowires. , 2013, Nano letters.

[10]  Miguel Muñoz Rojo,et al.  Fabrication of Bi2Te3 nanowire arrays and thermal conductivity measurement by 3ω-scanning thermal microscopy , 2013 .

[11]  Jian Wang,et al.  Dual evidence of surface Dirac states in thin cylindrical topological insulator Bi2Te3 nanowires , 2013, Scientific Reports.

[12]  D. Liang,et al.  Thermal conductivity measurement of individual Bi2Se3 nano-ribbon by self-heating three-ω method , 2013 .

[13]  P. Woias,et al.  Thermoelectric Characterization of Bismuth Telluride Nanowires, Synthesized Via Catalytic Growth and Post‐Annealing , 2013, Advanced materials.

[14]  S. Murakami,et al.  Thermoelectric transport in topological insulators , 2012 .

[15]  Thomas A. Lograsso,et al.  Weak Anti-localization and Quantum Oscillations of Surface States in Topological Insulator Bi2Se2Te , 2012, Scientific Reports.

[16]  Yi Cui,et al.  Weak antilocalization in Bi2(Se(x)Te(1-x))3 nanoribbons and nanoplates. , 2012, Nano letters.

[17]  Q. Xue,et al.  Weak antilocalization and conductance fluctuation in a submicrometer-sized wire of epitaxial Bi2Se3 , 2012, 1201.3180.

[18]  A. Cook,et al.  Majorana fermions in a topological-insulator nanowire proximity-coupled to an s -wave superconductor , 2011 .

[19]  Jane E. Cornett,et al.  Universal scaling relations for the thermoelectric power factor of semiconducting nanostructures , 2011 .

[20]  Q. Xue,et al.  Landau quantization and the thickness limit of topological insulator thin films of Sb2Te3. , 2011, Physical review letters.

[21]  K. Nielsch,et al.  Thermoelectric Nanostructures: From Physical Model Systems towards Nanograined Composites , 2011 .

[22]  Desheng Kong,et al.  Ultra-low carrier concentration and surface-dominant transport in antimony-doped Bi2Se3 topological insulator nanoribbons , 2011, Nature Communications.

[23]  H. Kosina,et al.  Effects of confinement and orientation on the thermoelectric power factor of silicon nanowires , 2011, 1106.2152.

[24]  Z. Ren,et al.  Observation of dirac holes and electrons in a topological insulator. , 2011, Physical review letters.

[25]  Philippe Caroff,et al.  Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases , 2011 .

[26]  Jane E. Cornett,et al.  Thermoelectric figure of merit calculations for semiconducting nanowires , 2011 .

[27]  Yong Wang,et al.  Manipulating surface states in topological insulator nanoribbons. , 2011, Nature nanotechnology.

[28]  Y. Ando,et al.  Berry phase of nonideal Dirac fermions in topological insulators , 2011, 1103.3096.

[29]  P. Jarillo-Herrero,et al.  Surface state transport and ambipolar electric field effect in Bi₂Se₃ nanodevices. , 2010, Nano letters.

[30]  H. Linke,et al.  Thermoelectric efficiency at maximum power in low-dimensional systems , 2010, 1010.1375.

[31]  Fu-Chun Zhang,et al.  Impurity effect on weak antilocalization in the topological insulator Bi2Te3. , 2010, Physical review letters.

[32]  S. Murakami,et al.  Large thermoelectric figure of merit for three-dimensional topological Anderson insulators via line dislocation engineering , 2010, 1007.2966.

[33]  W. Wang,et al.  Nanostructures for Thermoelectric Applications: Synthesis, Growth Mechanism, and Property Studies , 2010, Advanced materials.

[34]  E. Pop Energy dissipation and transport in nanoscale devices , 2010, 1003.4058.

[35]  Hongkun Park,et al.  Diameter dependence of the transport properties of antimony telluride nanowires. , 2010, Nano letters.

[36]  J. E. Moore,et al.  In-plane transport and enhanced thermoelectric performance in thin films of the topological insulators Bi₂Te₃ and Bi₂Se₃. , 2010, Physical review letters.

[37]  Zhi-Xun Shen,et al.  Topological insulator nanowires and nanoribbons. , 2009, Nano letters.

[38]  R J Cava,et al.  Observation of time-reversal-protected single-dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. , 2009, Physical review letters.

[39]  Xiao-Liang Qi,et al.  Aharonov-Bohm interference in topological insulator nanoribbons. , 2009, Nature materials.

[40]  Z. K. Liu,et al.  Experimental Realization of a Three-Dimensional Topological Insulator , 2010 .

[41]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[42]  R. Cava,et al.  Observation of a large-gap topological-insulator class with a single Dirac cone on the surface , 2009 .

[43]  Li Shi,et al.  Thermoelectric and structural characterizations of individual electrodeposited bismuth telluride nanowires , 2009 .

[44]  P. Roushan,et al.  p -type Bi 2 Se 3 for topological insulator and low-temperature thermoelectric applications , 2009, 0903.4406.

[45]  L. Cademartiri,et al.  Ultrathin Nanowires—A Materials Chemistry Perspective , 2009 .

[46]  P. Kim,et al.  Thermoelectric power measurements of wide band gap semiconducting nanowires , 2009 .

[47]  Xiao-Liang Qi,et al.  Magnetic impurities on the surface of a topological insulator. , 2008, Physical review letters.

[48]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[49]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[50]  J. Nurnus,et al.  Structural and thermoelectric properties of epitaxially grown Bi2Te3 thin films and superlattices , 2006 .

[51]  G. Ramanath,et al.  Low‐Temperature, Template‐Free Synthesis of Single‐Crystal Bismuth Telluride Nanorods , 2006 .

[52]  Li Shi,et al.  Thermoelectric properties of individual electrodeposited bismuth telluride nanowires , 2005 .

[53]  Natalio Mingo,et al.  Thermoelectric figure of merit and maximum power factor in III–V semiconductor nanowires , 2004 .

[54]  M. Dresselhaus,et al.  Recent developments in thermoelectric materials , 2003 .

[55]  E. H. Sondheimer,et al.  The mean free path of electrons in metals , 2001 .

[56]  A. Giani,et al.  Transport properties of V–VI semiconducting thermoelectric BiSbTe alloy thin films and their application to micromodule Peltier devices , 2001 .

[57]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.