Power to Gas: Technological Overview, Systems Analysis and Economic Assessment

Abstract The issue of limited fossil fuels combined with the vast technological improvements in recent years has initiated numerous installations of renewable power production, particularly in form of photovoltaic cells and wind turbines. Since the volatile character of wind and solar radiation leads to a fluctuating power production, these renewables are incapable of providing reliable base load power. To enable the transition to a renewable energy system, large-scale energy storage is required to compensate for short-term and seasonal imbalances and to save temporary excess power. Due to the order of magnitude involved, this can best be achieved by converting electricity into hydrogen via electrolysis, a process that is also called “power to gas”. Hereby, hydrogen can serve as a link combining the electricity, traffic and heating sector into one energy market. This paper presents the process chains of different power-to-gas paths, including different transformation technologies, which it evaluates with regard to their suitability for applications, the optional methanation step including the necessary production of CO 2 , distribution options and geological storage options as well as end-user applications. Finally, the use of hydrogen and methane in transportation and reconversion to power are compared from the economic point of view.

[1]  Detlef Stolten,et al.  Large-Scale Hydrogen Underground Storage for Securing Future Energy Supplies , 2010 .

[2]  D. Sauer,et al.  Energiespeicher für die Energiewende : Speicherungsbedarf und Auswirkungen auf das Übertragungsnetz für Szenarien bis 2050 ; Gesamttext , 2012 .

[3]  Detlef Stolten,et al.  Capture Options for Coal Power Plants , 2011 .

[4]  Matthias Finkenrath,et al.  Cost and Performance of Carbon Dioxide Capture from Power Generation , 2011 .

[5]  Christopher Yang,et al.  Determining the lowest-cost hydrogen delivery mode , 2007 .

[6]  G. Olah,et al.  Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere , 2012 .

[7]  Manya Ranjan,et al.  Economic and energetic analysis of capturing CO2 from ambient air , 2011, Proceedings of the National Academy of Sciences.

[8]  S. Kent Hoekman,et al.  CO2 recycling by reaction with renewably-generated hydrogen , 2010 .

[9]  Jürgen Mergel Hydrogen production by water electrolysis: Current status and future trends , 2013 .

[10]  M. D. S. Jean,et al.  Stack performances in high temperature steam electrolysis and co-electrolysis , 2015 .

[11]  Pablo Sanchis,et al.  Hydrogen Production From Water Electrolysis: Current Status and Future Trends , 2012, Proceedings of the IEEE.

[12]  D. Stolten,et al.  A comprehensive review on PEM water electrolysis , 2013 .

[13]  Mlikhail Panfilov,et al.  Underground Storage of Hydrogen: In Situ Self-Organisation and Methane Generation , 2010 .

[14]  Gerda Gahleitner Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications , 2013 .

[15]  S. V. Grigoriev,et al.  Chapter 2 – Water Electrolysis Technologies , 2013 .

[16]  Wang Wei,et al.  Methanation of carbon dioxide: an overview , 2011 .

[17]  Anthony F. Volpe,et al.  Competitive CO and CO2 methanation over supported noble metal catalysts in high throughput scanning mass spectrometer , 2005 .

[18]  M. Laguna-Bercero Recent advances in high temperature electrolysis using solid oxide fuel cells: A review , 2012 .

[19]  J. Mergel,et al.  Status on Technologies for Hydrogen Production by Water Electrolysis , 2013 .

[20]  Dennis Krieg,et al.  Konzept und Kosten eines Pipelinesystems zur Versorgung des deutschen Strassenverkehrs mit Wasserstoff , 2012 .

[21]  Detlef Stolten,et al.  Hydrogen as an Enabler for Renewable Energies , 2013 .

[22]  Detlef Stolten,et al.  Power to Gas , 2013 .

[23]  R Backhaus Entwicklungen bei Tanksystemen , 2012 .

[24]  Faruk Civan Natural Gas Transportation and Storage , 2004 .

[25]  K. Andreas Friedrich Wasserstoff als Chemischer Speicher: Erzeugung,Verteilung und Speicherung , 2012 .