Orthogonal polynomials of the R-linear generalized minimal residual method

The speed of convergence of the R-linear GMRES method is bounded in terms of a polynomial approximation problem on a finite subset of the spectrum. This result resembles the classical GMRES convergence estimate except that the matrix involved is assumed to be condiagonalizable. The bounds obtained are applicable to the CSYM method, in which case they are sharp. Then a new three term recurrence for generating a family of orthogonal polynomials is shown to exist, yielding a natural link with complex symmetric Jacobi matrices. This shows that a mathematical framework analogous to the one appearing with the Hermitian Lanczos method exists in the complex symmetric case. The probability of being condiagonalizable is estimated with random matrices.

[1]  M. B. Balk,et al.  On polyanalytic functions , 1970 .

[2]  Marko Huhtanen,et al.  Orthogonal polyanalytic polynomials and normal matrices , 2003, Math. Comput..

[3]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[4]  D. Khavinson From the Fundamental Theorem of Algebra to Astrophysics: a \Harmonious" Journey , 2007 .

[5]  A. Guionnet,et al.  An Introduction to Random Matrices , 2009 .

[6]  A. Bunse-Gerstner,et al.  On a conjugate gradient-type method for solving complex symmetric linear systems , 1999 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Lothar Reichel,et al.  Discrete least squares approximation by trigonometric polynomials , 1991 .

[9]  Bernhard Beckermann,et al.  Complex Jacobi matrices , 2001 .

[10]  G. Golub,et al.  Gmres: a Generalized Minimum Residual Algorithm for Solving , 2022 .

[11]  G. Golub,et al.  Matrices, Moments and Quadrature with Applications , 2009 .

[12]  MIHAI PUTINAR COMPLEX SYMMETRIC OPERATORS AND APPLICATIONS II , 2007 .

[13]  Barry Simon Szego's Theorem and Its Descendants: Spectral Theory for L2 Perturbations of Orthogonal Polynomials (M. B. Porter Lectures) , 2010 .

[14]  Roland W. Freund,et al.  Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..

[15]  Marko Huhtanen,et al.  The real linear eigenvalue problem in Cn , 2005 .

[16]  Bernd Silbermann,et al.  Approximation of Additive Convolution-Like Operators: Real C*-Algebra Approach , 2008 .

[17]  Barry Simon,et al.  CMV matrices: Five years after , 2006, math/0603093.

[18]  Stephan Ramon Garcia,et al.  Complex Symmetric Operators and Applications II , 2005 .

[19]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[20]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[21]  Marko Huhtanen,et al.  Real Linear Operator Theory and its Applications , 2011 .

[22]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[23]  Samuli Siltanen,et al.  Direct electrical impedance tomography for nonsmooth conductivities , 2011 .

[24]  G. Szegő Polynomials orthogonal on the unit circle , 1939 .

[25]  Marko Huhtanen,et al.  Exclusion and Inclusion Regions for the Eigenvalues of a Normal Matrix , 2001, SIAM J. Matrix Anal. Appl..

[26]  Marko Huhtanen,et al.  Numerical solution of the R-linear Beltrami equation , 2012, Math. Comput..

[27]  G. Forsythe Generation and Use of Orthogonal Polynomials for Data-Fitting with a Digital Computer , 1957 .

[28]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[29]  A. Edelman The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .

[30]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[31]  W. Gautschi Orthogonal polynomials: applications and computation , 1996, Acta Numerica.

[32]  Anne Greenbaum,et al.  Max-Min Properties of Matrix Factor Norms , 1994, SIAM J. Sci. Comput..

[33]  Timo Eirola,et al.  Solution Methods for R-Linear Problems in Cn , 2003, SIAM J. Matrix Anal. Appl..