Orthogonal polynomials of the R-linear generalized minimal residual method
暂无分享,去创建一个
[1] M. B. Balk,et al. On polyanalytic functions , 1970 .
[2] Marko Huhtanen,et al. Orthogonal polyanalytic polynomials and normal matrices , 2003, Math. Comput..
[3] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[4] D. Khavinson. From the Fundamental Theorem of Algebra to Astrophysics: a \Harmonious" Journey , 2007 .
[5] A. Guionnet,et al. An Introduction to Random Matrices , 2009 .
[6] A. Bunse-Gerstner,et al. On a conjugate gradient-type method for solving complex symmetric linear systems , 1999 .
[7] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[8] Lothar Reichel,et al. Discrete least squares approximation by trigonometric polynomials , 1991 .
[9] Bernhard Beckermann,et al. Complex Jacobi matrices , 2001 .
[10] G. Golub,et al. Gmres: a Generalized Minimum Residual Algorithm for Solving , 2022 .
[11] G. Golub,et al. Matrices, Moments and Quadrature with Applications , 2009 .
[12] MIHAI PUTINAR. COMPLEX SYMMETRIC OPERATORS AND APPLICATIONS II , 2007 .
[13] Barry Simon. Szego's Theorem and Its Descendants: Spectral Theory for L2 Perturbations of Orthogonal Polynomials (M. B. Porter Lectures) , 2010 .
[14] Roland W. Freund,et al. Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..
[15] Marko Huhtanen,et al. The real linear eigenvalue problem in Cn , 2005 .
[16] Bernd Silbermann,et al. Approximation of Additive Convolution-Like Operators: Real C*-Algebra Approach , 2008 .
[17] Barry Simon,et al. CMV matrices: Five years after , 2006, math/0603093.
[18] Stephan Ramon Garcia,et al. Complex Symmetric Operators and Applications II , 2005 .
[19] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[20] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[21] Marko Huhtanen,et al. Real Linear Operator Theory and its Applications , 2011 .
[22] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[23] Samuli Siltanen,et al. Direct electrical impedance tomography for nonsmooth conductivities , 2011 .
[24] G. Szegő. Polynomials orthogonal on the unit circle , 1939 .
[25] Marko Huhtanen,et al. Exclusion and Inclusion Regions for the Eigenvalues of a Normal Matrix , 2001, SIAM J. Matrix Anal. Appl..
[26] Marko Huhtanen,et al. Numerical solution of the R-linear Beltrami equation , 2012, Math. Comput..
[27] G. Forsythe. Generation and Use of Orthogonal Polynomials for Data-Fitting with a Digital Computer , 1957 .
[28] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[29] A. Edelman. The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .
[30] P. Deift. Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .
[31] W. Gautschi. Orthogonal polynomials: applications and computation , 1996, Acta Numerica.
[32] Anne Greenbaum,et al. Max-Min Properties of Matrix Factor Norms , 1994, SIAM J. Sci. Comput..
[33] Timo Eirola,et al. Solution Methods for R-Linear Problems in Cn , 2003, SIAM J. Matrix Anal. Appl..