The Retinotopic Organization of Macaque Occipitotemporal Cortex Anterior to V4 and Caudoventral to the Middle Temporal (MT) Cluster

The retinotopic organization of macaque occipitotemporal cortex rostral to area V4 and caudorostral to the recently described middle temporal (MT) cluster of the monkey (Kolster et al., 2009) is not well established. The proposed number of areas within this region varies from one to four, underscoring the ambiguity concerning the functional organization in this region of extrastriate cortex. We used phase-encoded retinotopic functional MRI mapping methods to reveal the functional topography of this cortical domain. Polar-angle maps showed one complete hemifield representation bordering area V4 anteriorly, split into dorsal and ventral counterparts corresponding to the lower and upper visual field quadrants, respectively. The location of this hemifield representation corresponds to area V4A. More rostroventrally, we identified three other complete hemifield representations. Two of these correspond to the dorsal and the ventral posterior inferotemporal areas (PITd and PITv, respectively) as identified in the Felleman and Van Essen (1991) scheme. The third representation has been tentatively named dorsal occipitotemporal area (OTd). Areas V4A, PITd, PITv, and OTd share a central visual field representation, similar to the areas constituting the MT cluster. Furthermore, they vary widely in size and represent the complete contralateral visual field. Functionally, these four areas show little motion sensitivity, unlike those of the MT cluster, and two of them, OTd and PITd, displayed pronounced two-dimensional shape sensitivity. In general, these results suggest that retinotopically organized tissue extends farther into rostral occipitotemporal cortex of the monkey than generally assumed.

[1]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[2]  D. V. Van Essen Towards a quantitative, probabilistic neuroanatomy of cerebral cortex. , 2004, Cortex; a journal devoted to the study of the nervous system and behavior.

[3]  G. Orban,et al.  The organization of orientation selectivity throughout macaque visual cortex. , 2002, Cerebral cortex.

[4]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. II. Retinotopic organization , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  Guy A. Orban,et al.  The Extraction of Depth Structure from Shading and Texture in the Macaque Brain , 2009, PloS one.

[6]  Lotfi B Merabet,et al.  Visual Topography of Human Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[7]  W. Maguire,et al.  Visuotopic organization of the prelunate gyrus in rhesus monkey , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[9]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[10]  Robert Desimone,et al.  Cortical connections of area V4 in the macaque. , 2000, Cerebral cortex.

[11]  Olivier P. Faugeras,et al.  The Retinotopic Organization of Primate Dorsal V4 and Surrounding Areas: A Functional Magnetic Resonance Imaging Study in Awake Monkeys , 2003, The Journal of Neuroscience.

[12]  Brian A Wandell,et al.  Visual field map clusters in human cortex , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[13]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[14]  Leslie G. Ungerleider,et al.  Visual topography of area TEO in the macaque , 1991, The Journal of comparative neurology.

[15]  D. Heeger,et al.  Topographic organization for delayed saccades in human posterior parietal cortex. , 2005, Journal of neurophysiology.

[16]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[17]  C. Gross,et al.  Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[18]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[19]  D. Whitteridge,et al.  The representation of the visual field on the cerebral cortex in monkeys , 1961, The Journal of physiology.

[20]  G. Orban,et al.  Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys , 2001, Neuron.

[21]  W. Vanduffel,et al.  Visual Field Map Clusters in Macaque Extrastriate Visual Cortex , 2009, The Journal of Neuroscience.

[22]  Ivo D. Popivanov,et al.  Probabilistic and Single-Subject Retinotopic Maps Reveal the Topographic Organization of Face Patches in the Macaque Cortex , 2014, The Journal of Neuroscience.

[23]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[24]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  S. Zeki,et al.  Convergent input from the striate cortex (area 17) to the cortex of the superior temporal sulcus in the rhesus monkey. , 1971, Brain research.

[26]  M. Corbetta,et al.  Evolutionarily Novel Functional Networks in the Human Brain? , 2013, The Journal of Neuroscience.

[27]  S. Zeki Cortical projections from two prestriate areas in the monkey. , 1971, Brain research.

[28]  C. Gross,et al.  Visuotopic organization and extent of V3 and V4 of the macaque , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  Anders M. Dale,et al.  Repeated fMRI Using Iron Oxide Contrast Agent in Awake, Behaving Macaques at 3 Tesla , 2002, NeuroImage.

[30]  Sabine Kastner,et al.  Neurons with radial receptive fields in monkey area V4A: evidence of a subdivision of prelunate gyrus based on neuronal response properties , 2002, Experimental Brain Research.

[31]  G. Orban,et al.  Search for color 'center(s)' in macaque visual cortex. , 2004, Cerebral cortex.

[32]  D. C. Essen,et al.  The topographic organization of rhesus monkey prestriate cortex. , 1978, The Journal of physiology.

[33]  Bevil R. Conway,et al.  Toward a Unified Theory of Visual Area V4 , 2012, Neuron.

[34]  P. Roelfsema,et al.  Bottom-Up Dependent Gating of Frontal Signals in Early Visual Cortex , 2008, Science.

[35]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[36]  D. C. Essen,et al.  Towards a Quantitative, Probabilistic Neuroanatomy of Cerebral Cortex , 2004, Cortex.

[37]  G. Orban,et al.  The Retinotopic Organization of the Human Middle Temporal Area MT/V5 and Its Cortical Neighbors , 2010, The Journal of Neuroscience.

[38]  田中 啓治 Analysis of Local and Wide-Field Movements in the Superior Temporal Visual Areas of the Macaque Monkey , 1987 .

[39]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[40]  G. Orban,et al.  Motion-responsive regions of the human brain , 1999, Experimental Brain Research.

[41]  K. Tanaka,et al.  Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  G. Orban,et al.  Extracting 3D from Motion: Differences in Human and Monkey Intraparietal Cortex , 2002, Science.

[43]  N. Kanwisher,et al.  Cortical Regions Involved in Perceiving Object Shape , 2000, The Journal of Neuroscience.

[44]  Tristan A. Chaplin,et al.  Representation of the visual field in the primary visual area of the marmoset monkey: Magnification factors, point‐image size, and proportionality to retinal ganglion cell density , 2013, The Journal of comparative neurology.

[45]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[46]  Leslie G. Ungerleider,et al.  Cortical projections of area V2 in the macaque. , 1997, Cerebral cortex.

[47]  Benjamin D. Singer,et al.  Retinotopic Organization of Human Ventral Visual Cortex , 2009, The Journal of Neuroscience.

[48]  Bevil R. Conway,et al.  Specialized Color Modules in Macaque Extrastriate Cortex , 2007, Neuron.

[49]  D. V. van Essen,et al.  The Processing of Visual Shape in the Cerebral Cortex of Human and Nonhuman Primates: A Functional Magnetic Resonance Imaging Study , 2004, The Journal of Neuroscience.

[50]  M. Corbetta,et al.  Topographic organization of macaque area LIP , 2010, Proceedings of the National Academy of Sciences.

[51]  Fuqiang Zhao,et al.  Spatial specificity of cerebral blood volume-weighted fMRI responses at columnar resolution , 2005, NeuroImage.

[52]  N. Logothetis,et al.  Visual Areas in Macaque Cortex Measured Using Functional Magnetic Resonance Imaging , 2002, The Journal of Neuroscience.

[53]  M. Pinsk,et al.  Visuotopic Organization of Macaque Posterior Parietal Cortex: A Functional Magnetic Resonance Imaging Study , 2011, The Journal of Neuroscience.

[54]  John W. Harwell,et al.  Cortical parcellations of the macaque monkey analyzed on surface-based atlases. , 2012, Cerebral cortex.

[55]  Eric L. Schwartz,et al.  Computational Studies of the Spatial Architecture of Primate Visual Cortex , 1994 .

[56]  M. Corbetta,et al.  Inter-species activity correlations reveal functional correspondences between monkey and human brain areas , 2012, Nature Methods.

[57]  Kazuo Hikosaka,et al.  Representation of foveal visual fields in the ventral bank of the superior temporal sulcus in the posterior inferotemporal cortex of the macaque monkey , 1998, Behavioural Brain Research.

[58]  A. M. Dale,et al.  BORDERS OF MULTIPLE VISUAL AREAS IN HUMANS REVEALED BY FUNCTIONAL MRI , 1995 .

[59]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[60]  Iwona Stepniewska,et al.  Reappraisal of DL/V4 boundaries based on connectivity patterns of dorsolateral visual cortex in macaques. , 2005, Cerebral cortex.

[61]  Naokazu Goda,et al.  Distribution of colour‐selective activity in the monkey inferior temporal cortex revealed by functional magnetic resonance imaging , 2009, The European journal of neuroscience.