Using electric current to surpass the microstructure breakup limit

[1]  Wenjun Lu,et al.  Influence of κ-carbide interface structure on the formability of lightweight steels , 2016 .

[2]  W. Lu,et al.  Influence of κ-carbide interface structure on the formability of lightweight steels , 2016 .

[3]  Michael P. Brenner,et al.  Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator , 2015, Science.

[4]  He Jie,et al.  Influence of electric current pulses on the solidification of Cu-Bi-Sn immiscible alloys , 2015, Scientific Reports.

[5]  R. Spolenak,et al.  Ultrastrong ductile and stable high-entropy alloys at small scales , 2015, Nature Communications.

[6]  R. Qin,et al.  Controlled motion of electrically neutral microparticles by pulsed direct current , 2015, Scientific Reports.

[7]  Hua Yang,et al.  Iron carbide and nitride via a flexible route: synthesis, structure and magnetic properties , 2015 .

[8]  Rongshan Qin,et al.  Computational thermodynamics in electric current metallurgy , 2015 .

[9]  A. Rahnama,et al.  Electropulse-induced microstructural evolution in a ferritic–pearlitic 0.14% C steel , 2015 .

[10]  U. Pöschl,et al.  Size dependence of phase transitions in aerosol nanoparticles , 2015, Nature Communications.

[11]  H. W. Zhang,et al.  Strain-Induced Ultrahard and Ultrastable Nanolaminated Structure in Nickel , 2013, Science.

[12]  J. R. Castrejón-Pita,et al.  Breakup of liquid filaments. , 2012, Physical review letters.

[13]  K. Loh,et al.  Transforming moiré blisters into geometric graphene nano-bubbles , 2012, Nature Communications.

[14]  Rongshan Qin,et al.  Electropulse-induced cementite nanoparticle formation in deformed pearlitic steels , 2011 .

[15]  C. Shek,et al.  On the thermodynamics and kinetics of electropulsing induced dissolution of β-Mg17Al12 phase in an aged Mg–9Al–1Zn alloy , 2009 .

[16]  Carl V. Brown,et al.  Voltage-programmable liquid optical interface , 2009 .

[17]  H. Bhadeshia,et al.  Topology of the Deformation of a Non-uniform Grain Structure , 2009 .

[18]  H. K. D. H. Bhadeshiaa,et al.  Phase-field model study of the effect of interface anisotropy on the crystal morphological evolution of cubic metals , 2009 .

[19]  Wuliang Yin,et al.  Off-line measurement of decarburization of steels using a multifrequency electromagnetic sensor , 2008 .

[20]  R. Wiesendanger,et al.  Current-Induced Magnetization Switching with a Spin-Polarized Scanning Tunneling Microscope , 2007, Science.

[21]  Jun Luo,et al.  Refining mechanism of the electric current pulse on the solidification structure of pure aluminum , 2007 .

[22]  J. Baret,et al.  Electrowetting: from basics to applications , 2005 .

[23]  S. Schmidt,et al.  Watching the Growth of Bulk Grains During Recrystallization of Deformed Metals , 2004, Science.

[24]  V. Percec,et al.  Supramolecular dendritic liquid quasicrystals , 2004, Nature.

[25]  J. Warren,et al.  A general mechanism of polycrystalline growth , 2004, Nature materials.

[26]  R. Sandström,et al.  Electrical resistivity of steels and face-centered-cubic iron , 2002 .

[27]  R. Murray,et al.  Basics or Applications , 1998 .

[28]  Y. Shimamoto,et al.  Improvement in a droplet breakup model for numerical analysis of fuel sprays , 1997 .

[29]  Elperin,et al.  Thermodynamics of nucleation in current-carrying conductors. , 1994, Physical review. B, Condensed matter.

[30]  M. Goosen,et al.  Electrostatic droplet generation: Mechanism of polymer droplet formation , 1994 .

[31]  Brian K. Tanner,et al.  The magnetic properties of pearlitic steels as a function of carbon content , 1993 .

[32]  D. S. Zhou,et al.  Ferrite: Cementite crystallography in pearlite , 1992 .

[33]  J. Sherwood,et al.  Breakup of fluid droplets in electric and magnetic fields , 1988, Journal of Fluid Mechanics.

[34]  T. Kotaka,et al.  Deformation of viscous droplets in an electric field: poly(propylene oxide)/poly(dimethylsiloxane) systems , 1988 .

[35]  R. Mehl,et al.  The free energy of formation and the interfacial enthalpy in pearlite , 1958 .