Optimal Imaged-based Defocus Estimates from Individual Natural Images

We present a general method for estimating defocus blur from first principles, given a set of natural scenes and properties of the vision system. Local, high-precision, signed estimates are obtained for a model human visual system.

[1]  Stephen Lin,et al.  Coded aperture pairs for depth from defocus , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[2]  D. Williams,et al.  Visibility of interference fringes near the resolution limit. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[3]  R. Shapley,et al.  The spatial transformation of color in the primary visual cortex of the macaque monkey , 2001, Nature Neuroscience.

[4]  Jiri Najemnik,et al.  Optimal stimulus encoders for natural tasks. , 2009, Journal of vision.

[5]  Frédo Durand,et al.  Image and depth from a conventional camera with a coded aperture , 2007, ACM Trans. Graph..

[6]  James F. O'Brien,et al.  Using blur to affect perceived distance and size , 2010, TOGS.

[7]  Alex Pentland,et al.  Simple range cameras based on focal error , 1994 .

[8]  Philip B. Kruger,et al.  Chromatic aberration and ocular focus: Fincham revisited , 1993, Vision Research.

[9]  Philip B. Kruger,et al.  Spatiotemporal transfer function of human accommodation , 1994, Vision Research.

[10]  Wilson S. Geisler,et al.  Natural systems analysis , 2008, Electronic Imaging.

[11]  LINDESAY HARKNESS,et al.  Chameleons use accommodation cues to judge distance , 1977, Nature.

[12]  Jonathan Winawer,et al.  Homeostasis of Eye Growth and the Question of Myopia , 2012, Neuron.