Truncated Conjugate Gradient: An Optimal Strategy for the Analytical Evaluation of the Many-Body Polarization Energy and Forces in Molecular Simulations
暂无分享,去创建一个
Benjamin Stamm | Yvon Maday | Jean-Philip Piquemal | Jay W Ponder | Louis Lagardère | Antoine Levitt | Pengyu Ren | Félix Aviat | Pengyu Y. Ren | J. Ponder | Y. Maday | A. Levitt | J. Piquemal | B. Stamm | Louis Lagardère | Félix Aviat
[1] L. Greengard,et al. Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .
[2] Alexander D. MacKerell,et al. Force Field for Peptides and Proteins based on the Classical Drude Oscillator. , 2013, Journal of chemical theory and computation.
[3] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[4] P. Popelier,et al. Intramolecular polarisable multipolar electrostatics from the machine learning method Kriging , 2011 .
[5] Pengyu Y. Ren,et al. Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .
[6] Nohad Gresh,et al. Anisotropic, Polarizable Molecular Mechanics Studies of Inter- and Intramolecular Interactions and Ligand-Macromolecule Complexes. A Bottom-Up Strategy. , 2007, Journal of chemical theory and computation.
[7] Wei Wang,et al. Fast Polarizable Force Field Computation in Biomolecular Simulations , 2005 .
[8] Benjamin Stamm,et al. Scalable evaluation of polarization energy and associated forces in polarizable molecular dynamics: II. Toward massively parallel computations using smooth particle mesh Ewald. , 2015, Journal of chemical theory and computation.
[9] Semyon Tsynkov,et al. A Theoretical Introduction to Numerical Analysis , 2006 .
[10] B. Thole. Molecular polarizabilities calculated with a modified dipole interaction , 1981 .
[11] Wei Wang,et al. Fast evaluation of polarizable forces. , 2005, The Journal of chemical physics.
[12] Steven J. Stuart,et al. Dynamical fluctuating charge force fields: Application to liquid water , 1994 .
[13] Reinhold Schneider,et al. An analysis for the DIIS acceleration method used in quantum chemistry calculations , 2011 .
[14] É. Picard. Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives , 1890 .
[15] G. Cisneros,et al. Development of AMOEBA force field for 1,3-dimethylimidazolium based ionic liquids. , 2014, The journal of physical chemistry. B.
[16] Pengyu Y. Ren,et al. The Polarizable Atomic Multipole-based AMOEBA Force Field for Proteins. , 2013, Journal of chemical theory and computation.
[17] Andrew C Simmonett,et al. An empirical extrapolation scheme for efficient treatment of induced dipoles. , 2016, The Journal of chemical physics.
[18] Mark E. Tuckerman,et al. Reversible multiple time scale molecular dynamics , 1992 .
[19] 高等学校計算数学学報編輯委員会編. 高等学校計算数学学報 = Numerical mathematics , 1979 .
[20] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[21] Teresa Head-Gordon,et al. An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction. , 2015, The Journal of chemical physics.
[22] Jií Kolafa,et al. Time‐reversible always stable predictor–corrector method for molecular dynamics of polarizable molecules , 2004, J. Comput. Chem..
[23] Andrew C Simmonett,et al. Efficient treatment of induced dipoles. , 2015, The Journal of chemical physics.
[24] C. W. Gear,et al. The automatic integration of ordinary differential equations , 1971, Commun. ACM.
[25] Benjamin Stamm,et al. Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: I. Toward Massively Parallel Direct Space Computations , 2014 .
[26] T. Darden,et al. A smooth particle mesh Ewald method , 1995 .
[27] Margaret E. Johnson,et al. Current status of the AMOEBA polarizable force field. , 2010, The journal of physical chemistry. B.