Interfacial B-site atomic configuration in polar (111) and non-polar (001) SrIrO3/SrTiO3 heterostructures

The precise control of interfacial atomic arrangement in ABO3 perovskite heterostructures is paramount, particularly in cases where the subsequent electronic properties of the material exhibit geometrical preferences along polar crystallographic directions that feature inevitably complex surface reconstructions. Here, we present the B-site interfacial structure in polar (111) and non-polar (001) SrIrO3/SrTiO3 interfaces. The heterostructures were examined using scanning transmission electron microscopy and synchrotron-based coherent Bragg rod analysis. Our results reveal the preference of B-site intermixing across the (111) interface due to the polarity-compensated SrTiO3 substrate surface prior to growth. By comparison, the intermixing at the non-polar (001) interface is negligible. This finding suggests that the intermixing may be necessary to mitigate epitaxy along heavily reconstructed and non-stoichiometric (111) perovskite surfaces. Furthermore, this preferential B-site configuration could allow the...

[1]  S. Gariglio,et al.  Epitaxial growth and thermodynamic stability of SrIrO3/SrTiO3 heterostructures , 2016, 1605.02617.

[2]  S. Ismail-Beigi,et al.  Role of double Ti O 2 layers at the interface of FeSe/ SrTi O 3 superconductors , 2016, 1605.01312.

[3]  C. Fennie,et al.  Polar metals by geometric design , 2016, Nature.

[4]  R. Takahashi,et al.  Effect of Polar (111)-Oriented SrTiO3 on Initial Perovskite Growth , 2016 .

[5]  A. Mehta,et al.  Thickness dependence of exchange coupling in (111)-oriented perovskite oxide superlattices , 2016 .

[6]  Jin-an Shi,et al.  Mott Electrons in an Artificial Graphenelike Crystal of Rare-Earth Nickelate. , 2014, Physical review letters.

[7]  L. Marks,et al.  Transition from Order to Configurational Disorder for Surface Reconstructions on SrTiO_{3}(111). , 2015, Physical review letters.

[8]  M. C.Sullivan,et al.  Complex oxide growth using simultaneous in situ reflection high-energy electron diffraction and x-ray reflectivity: When is one layer complete? , 2014, 1410.0944.

[9]  S. Middey,et al.  Polarity compensation in ultra-thin films of complex oxides: The case of a perovskite nickelate , 2014, Scientific Reports.

[10]  A. Millis,et al.  Colloquium: Emergent properties in plane view: Strong correlations at oxide interfaces , 2014 .

[11]  Wenguang Zhu,et al.  Correlation effects in (111) bilayers of perovskite transition-metal oxides , 2013, 1401.0009.

[12]  W. Pickett,et al.  Massive symmetry breaking in LaAlO3/SrTiO3(111) quantum wells: a three-orbital strongly correlated generalization of graphene. , 2013, Physical review letters.

[13]  C. Eom,et al.  Surface stability of epitaxial La0.7Sr0.3MnO3 thin films on (111)-oriented SrTiO3 , 2013 .

[14]  S. Okamoto Doped Mott insulators in (111) bilayers of perovskite transition-metal oxides with a strong spin-orbit coupling. , 2012, Physical review letters.

[15]  F. Sánchez,et al.  High mobility conduction at (110) and (111) LaAlO3/SrTiO3 interfaces , 2012, Scientific Reports.

[16]  J. Íñiguez,et al.  Exchange bias in LaNiO3-LaMnO3 superlattices. , 2012, Nature materials.

[17]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[18]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[19]  D. Blank,et al.  Epitaxial oxide growth on polar (111) surfaces , 2011 .

[20]  Ying Ran,et al.  Nearly flat band with Chern numberC=2on the dice lattice , 2011, 1109.3435.

[21]  S. Shiraki,et al.  Atomic-scale visualization of initial growth of homoepitaxial SrTiO₃ thin film on an atomically ordered substrate. , 2011, ACS nano.

[22]  A. Ruegg,et al.  Topological insulators from complex orbital order in transition-metal oxides heterostructures , 2011, 1109.1297.

[23]  S. Okamoto,et al.  Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures. , 2011, Nature communications.

[24]  L. Marks,et al.  Vacant-Site Octahedral Tilings on SrTiO 3 (001), the ( 13 × 13 ) R 33.7 ° Surface, and Related Structures , 2011 .

[25]  Sang-Koog Kim,et al.  Layer-by-layer growth of SrFeO3-δ thin films on atomically flat single-terminated SrRuO3/SrTiO3 (111) surfaces , 2010 .

[26]  B. Noheda,et al.  Growth of flat SrRuO3 (111) thin films suitable as bottom electrodes in heterostructures , 2008, 0807.1647.

[27]  Darrell G. Schlom,et al.  A Thin Film Approach to Engineering Functionality into Oxides , 2008 .

[28]  Sang-Koog Kim,et al.  Atomically flat single-terminated SrTiO3 (111) surface , 2008 .

[29]  O. Bunk,et al.  Surface structure of SrTiO{sub 3}(001) , 2007 .

[30]  Roy Clarke,et al.  Direct determination of epitaxial interface structure in Gd2O3 passivation of GaAs , 2002, Nature materials.

[31]  Horst Rogalla,et al.  Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide , 1998 .

[32]  H. Koinuma,et al.  Atomic control of SrTiO3 surface for perfect epitaxy of perovskite oxides , 1996 .

[33]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .