Evaluating the utility of the ensemble transform Kalman filter for adaptive sampling when updating a hydrodynamic model

[1]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[2]  J. Cunge,et al.  Practical aspects of computational river hydraulics , 1980 .

[3]  I. Rodríguez‐Iturbe,et al.  Random Functions and Hydrology , 1984 .

[4]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[5]  Philippe Courtier,et al.  Unified Notation for Data Assimilation : Operational, Sequential and Variational , 1997 .

[6]  Jens Christian Refsgaard,et al.  Validation and Intercomparison of Different Updating Procedures for Real-Time Forecasting , 1997 .

[7]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[8]  H. Madsen,et al.  Comparison of extended and ensemble Kalman filters for data assimilation in coastal area modelling , 1999 .

[9]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[10]  D. Mason,et al.  Flood boundary delineation from Synthetic Aperture Radar imagery using a statistical active contour model , 2001 .

[11]  E. Sprokkereef Extension of the Flood Forecasting Model FloRIJN , 2002 .

[12]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[13]  K. Beven,et al.  Development of a European flood forecasting system , 2003 .

[14]  Xuguang Wang,et al.  A Comparison of Breeding and Ensemble Transform Kalman Filter Ensemble Forecast Schemes , 2003 .

[15]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[16]  M. Dijk,et al.  DELFT-FEWS: AN OPEN SHELL FLOOD FORECASTING SYSTEM , 2004 .

[17]  A. Weerts,et al.  Particle filtering and Ensemble Kalman Filtering for runoff nowcasting using conceptual rainfall runoff models , 2004 .

[18]  S. Julier,et al.  Which Is Better, an Ensemble of Positive–Negative Pairs or a Centered Spherical Simplex Ensemble? , 2004 .

[19]  S. Wright,et al.  Estimating sediment budgets at the interface between rivers and estuaries with application to the Sacramento‐San Joaquin River Delta , 2005 .

[20]  Zong‐Liang Yang,et al.  Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event. , 2005, Journal of environmental management.

[21]  C. Diks,et al.  Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation , 2005 .

[22]  P. Bates,et al.  Flood Forecasting and Warning at the River Basin and at the European Scale , 2005 .

[23]  A. Weerts,et al.  Particle filtering and ensemble Kalman filtering for state updating with hydrological conceptual rainfall‐runoff models , 2006 .

[24]  Craig H. Bishop,et al.  Verification region selection and data assimilation for adaptive sampling , 2006 .

[25]  Keith Beven,et al.  An intelligent and adaptable flood monitoring and warning system , 2006 .

[26]  G. Katul,et al.  Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy , 2006 .

[27]  Peter M. Atkinson,et al.  Flood inundation model updating using an ensemble Kalman filter and spatially distributed measurements , 2007 .

[28]  A. Weerts,et al.  Application of data assimilation in portable operational forecasting systems—the DATools assimilation environment , 2007 .