Answering Why-questions by Exemplars in Attributed Graphs

This paper studies the problem of \em answering Why-questions for graph pattern queries. Given a query Q, its answers $Q(G)$ in a graph G, and an exemplar $\E$ that describes desired answers, it aims to compute a query rewrite $Q'$, such that $Q'(G)$ incorporates relevant entities and excludes irrelevant ones wrt $\E$ under a closeness measure. (1) We characterize the problem by \em Q-Chase. It rewrites Q by applying a sequence of applicable operators guided by $\E$, and backtracks to derive optimal query rewrite. (2) We develop feasible Q-Chase-based algorithms, from anytime solutions to fixed-parameter approximations to compute query rewrites. These algorithms implement Q-Chase by detecting picky operators at run time, which discriminately enforce $\E$ to retain answers that are closer to exemplars, and effectively prune both operators and irrelevant matches, by consulting a cache of star patterns (called \em star views ). Using real-world graphs, we experimentally verify the efficiency and effectiveness of \qchase techniques and their applications.

[1]  Shuigeng Zhou,et al.  BOOMER: Blending Visual Formulation and Processing of P -Homomorphic Queries on Large Networks , 2018, SIGMOD Conference.

[2]  Ramez Elmasri,et al.  Querying Knowledge Graphs by Example Entity Tuples , 2013, IEEE Transactions on Knowledge and Data Engineering.

[3]  Wolfgang Lehner,et al.  Answering "Why Empty?" and "Why So Many?" queries in graph databases , 2016, J. Comput. Syst. Sci..

[4]  M. Tamer Özsu,et al.  Diversified Stress Testing of RDF Data Management Systems , 2014, SEMWEB.

[5]  Dan Suciu,et al.  WHY SO? or WHY NO? Functional Causality for Explaining Query Answers , 2009, MUD.

[6]  Xin Wang,et al.  Diversified Top-k Graph Pattern Matching , 2013, Proc. VLDB Endow..

[7]  Chengkai Li,et al.  VIIQ: Auto-Suggestion Enabled Visual Interface for Interactive Graph Query Formulation , 2015, Proc. VLDB Endow..

[8]  Gerhard Weikum,et al.  NAGA: Searching and Ranking Knowledge , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[9]  Yinghui Wu,et al.  Functional Dependencies for Graphs , 2016, SIGMOD Conference.

[10]  Sanjeev Khanna,et al.  Why and Where: A Characterization of Data Provenance , 2001, ICDT.

[11]  Meng Wang,et al.  Answering why-not questions on SPARQL queries , 2018, Knowledge and Information Systems.

[12]  Yinghui Wu,et al.  Fast top-k search in knowledge graphs , 2016, 2016 IEEE 32nd International Conference on Data Engineering (ICDE).

[13]  Jianxin Li,et al.  Efficient Answering of Why-Not Questions in Similar Graph Matching , 2015, IEEE Transactions on Knowledge and Data Engineering.

[14]  Lei Zou,et al.  gStore: a graph-based SPARQL query engine , 2014, The VLDB Journal.

[15]  Gerhard Weikum,et al.  Exploratory Querying of Extended Knowledge Graphs , 2016, Proc. VLDB Endow..

[16]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[17]  Ramez Elmasri,et al.  Querying Knowledge Graphs by Example Entity Tuples ( Extended Abstract ) , 2014 .

[18]  Mohammad Hossein Namaki,et al.  Answering Why-Questions for Subgraph Queries in Multi-attributed Graphs , 2019, 2019 IEEE 35th International Conference on Data Engineering (ICDE).

[19]  Mohammad Hossein Namaki,et al.  Discovering Graph Temporal Association Rules , 2017, CIKM.

[20]  Takuya Akiba,et al.  Fast exact shortest-path distance queries on large networks by pruned landmark labeling , 2013, SIGMOD '13.

[21]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[22]  Quoc Trung Tran,et al.  How to ConQueR why-not questions , 2010, SIGMOD Conference.

[23]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[24]  Gang Hu,et al.  SQLGraph: An Efficient Relational-Based Property Graph Store , 2015, SIGMOD Conference.

[25]  Yinghui Wu,et al.  Schemaless and Structureless Graph Querying , 2014, Proc. VLDB Endow..

[26]  Samir Khuller,et al.  The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..

[27]  Wolfgang Lehner,et al.  Relaxation of subgraph queries delivering empty results , 2015, SSDBM.

[28]  Alexandra Poulovassilis,et al.  Applications of Flexible Querying to Graph Data , 2018, Graph Data Management.

[29]  Xuelong Li,et al.  A survey of graph edit distance , 2010, Pattern Analysis and Applications.

[30]  Pablo de la Fuente,et al.  An Empirical Study of Real-World SPARQL Queries , 2011, ArXiv.

[31]  Themis Palpanas,et al.  Exemplar queries: a new way of searching , 2016, The VLDB Journal.

[32]  Jens Lehmann,et al.  DBpedia SPARQL Benchmark - Performance Assessment with Real Queries on Real Data , 2011, SEMWEB.

[33]  Xin Zhang,et al.  GExp: Cost-aware Graph Exploration with Keywords , 2018, SIGMOD Conference.

[34]  Chengfei Liu,et al.  User Feedback Based Query Refinement by Exploiting Skyline Operator , 2012, ER.

[35]  Francesco Bonchi,et al.  Graph Query Reformulation with Diversity , 2015, KDD.

[36]  Dániel Marx,et al.  Parameterized Complexity and Approximation Algorithms , 2008, Comput. J..

[37]  Klaudia Frankfurter Computers And Intractability A Guide To The Theory Of Np Completeness , 2016 .

[38]  Phokion G. Kolaitis,et al.  Logical Definability of NP Optimization Problems , 1994, Inf. Comput..

[39]  Jianzhong Li,et al.  Graph homomorphism revisited for graph matching , 2010, Proc. VLDB Endow..

[40]  Themis Palpanas,et al.  Exemplar Queries: Give me an Example of What You Need , 2014, Proc. VLDB Endow..