The effect of fractional parameter on a perfect conducting elastic half-space in generalized magneto-thermoelasticity

[1]  M. Lazarevic Biologically inspired control and modeling of (bio)robotic systems and some applications of fractional calculus in mechanics , 2013 .

[2]  Hamdy M. Youssef,et al.  Fractional order generalized thermoelastic half-space subjected to ramp-type heating , 2010 .

[3]  Hamdy M. Youssef,et al.  Theory of Fractional Order Generalized Thermoelasticity , 2010 .

[4]  H. Sherief,et al.  Fractional order theory of thermoelasticity , 2010 .

[5]  S. Sarkarb,et al.  Thermal Stresses in an Isotropic Elastic Slab due to Prescribed Surface Temperature , 2010 .

[6]  Martin Ostoja-Starzewski,et al.  Thermoelasticity with Finite Wave Speeds , 2009 .

[7]  A. Abouelregal,et al.  ELECTROMAGNETO-THERMOELASTIC PROBLEM IN A THICK PLATE USING GREEN AND NAGHDI THEORY , 2009 .

[8]  M. Othman,et al.  Effect of rotation on plane waves of generalized electro-magneto-thermoviscoelasticity with two relaxation times , 2008 .

[9]  Zhicheng Wang,et al.  GENERATION OF GENERALIZED MAGNETO-THERMOELASTIC WAVES BY THERMAL SHOCK IN A HALF-SPACE OF FINITE CONDUCTIVITY , 2008 .

[10]  M. Othman,et al.  The effect of rotation on generalized micropolar thermoelasticity for a half-space under five theories , 2007 .

[11]  Tianhu He,et al.  A Two-Dimensional Generalized Electromagneto-Thermoelastic Problem for a Half-Space , 2006 .

[12]  H. M. Youssef,et al.  Generalized magneto-thermoelasticity in a conducting medium with variable material properties , 2006, Appl. Math. Comput..

[13]  H. Youssef,et al.  Generalized magneto-thermoelasticity in a perfectly conducting medium , 2005 .

[14]  M. Othman Effect of rotation and relaxation time on a thermal shock problem for a half-space in generalized thermo-viscoelasticity , 2005 .

[15]  Y. Povstenko FRACTIONAL HEAT CONDUCTION EQUATION AND ASSOCIATED THERMAL STRESS , 2004 .

[16]  M. Othman Electrohydrodynamic instability of a rotating layer of a viscoelastic fluid heated from below , 2004 .

[17]  Magdy A. Ezzat,et al.  Magnetothermoelasticity with two relaxation times in conducting medium with variable electrical and thermal conductivity , 2003, Appl. Math. Comput..

[18]  Magdy A. Ezzat,et al.  State space approach to two-dimensional electromagneto–thermoelastic problem with two relaxation times , 2001 .

[19]  M. Othman,et al.  ELECTROMAGNETO-THERMOELASTIC PLANE WAVES WITH THERMAL RELAXATION IN A MEDIUM OF PERFECT CONDUCTIVITY , 2001 .

[20]  Henning Struchtrup,et al.  Heat pulse experiments revisited , 1993 .

[21]  L. Debnath,et al.  Magneto-thermo-elastic disturbances with thermal relaxation in a solid due to heat sources , 1988 .

[22]  P. C. Bhakta,et al.  Eigenfunction expansion method to the solution of simultaneous equations and its application in mechanics , 1985 .

[23]  C. Massalas,et al.  Coupled magnetothermoelastic problem in elastic half-space having finite conductivity , 1983 .

[24]  J. L. Nowinski,et al.  Theory of thermoelasticity with applications , 1978 .

[25]  M. Caputo Vibrations of an infinite viscoelastic layer with a dissipative memory , 1974 .

[26]  N. Laws,et al.  On the entropy production inequality , 1972 .

[27]  M. Caputo,et al.  A new dissipation model based on memory mechanism , 1971 .

[28]  Francesco Mainardi,et al.  Linear models of dissipation in anelastic solids , 1971 .

[29]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[30]  H. Lord,et al.  A GENERALIZED DYNAMICAL THEORY OF THERMOELASTICITY , 1967 .

[31]  G. Paria MAGNETO-ELASTICITY AND MAGNETO-THERMO-ELASTICITY , 1966 .

[32]  M. Biot Thermoelasticity and Irreversible Thermodynamics , 1956 .