Time behaviour of the error when simulating finite-band periodic waves. The case of the KdV equation

This paper is devoted to study the error growth of numerical time integrators for N-phase or N-band quasi-periodic (in time) solutions of the periodic Korteweg-de Vries equation. It is shown that the preservation, through numerical time integration, of conserved quantities of the periodic problem of the equation, may be an element to take into account in the selection of the numerical method. We explain why the inclusion of these properties of conservation provides a better error propagation. In particular, we emphasize how the preservation of invariants makes influence in the simulation of some physical parameters of the waves.

[1]  A. Durán,et al.  The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation , 2000 .

[2]  A. Scott,et al.  The soliton: A new concept in applied science , 1973 .

[3]  Sergei Petrovich Novikov,et al.  NON-LINEAR EQUATIONS OF KORTEWEG-DE VRIES TYPE, FINITE-ZONE LINEAR OPERATORS, AND ABELIAN VARIETIES , 1976 .

[4]  Uri M. Ascher,et al.  On Symplectic and Multisymplectic Schemes for the KdV Equation , 2005, J. Sci. Comput..

[5]  Alan C. Newell,et al.  Solitons in mathematics and physics , 1987 .

[6]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[7]  J. Sanz-Serna,et al.  Accuracy and conservation properties in numerical integration: the case of the Korteweg-de Vries equation , 1997 .

[8]  B. Cano,et al.  Error Growth in the Numerical Integration of Periodic Orbits, with Application to Hamiltonian and Reversible Systems , 1997 .

[9]  Henry P. McKean,et al.  Hill’s Operator and Hyperelliptic Function Theory in the Presence of Infinitely Many Branch Points , 1976 .

[10]  S. Kuksin PERTURBATION THEORY FOR QUASIPERIODIC SOLUTIONS OF INFINITE-DIMENSIONAL HAMILTONIAN SYSTEMS, AND ITS APPLICATION TO THE KORTEWEG-DE VRIES EQUATION , 1989 .

[11]  J. Maddocks,et al.  On the stability of KdV multi‐solitons , 1993 .

[12]  S. Reich Backward Error Analysis for Numerical Integrators , 1999 .

[13]  C. W. Gear,et al.  Invariants and numerical methods for ODEs , 1992 .

[14]  M. A. López-Marcos,et al.  Conservative numerical methods for solitary wave interactions , 2003 .

[15]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[16]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[17]  Brian E. Moore,et al.  Backward error analysis for multi-symplectic integration methods , 2003, Numerische Mathematik.

[18]  H. McKean,et al.  The spectrum of Hill's equation , 1975 .

[19]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[20]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[21]  Igor Krichever,et al.  Spectral theory of two-dimensional periodic operators and its applications , 1989 .

[22]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[23]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[24]  Bengt Fornberg,et al.  A numerical and theoretical study of certain nonlinear wave phenomena , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[25]  D. McLaughlin Modulations of KDV wavetrains , 1981 .

[26]  Peter Henrici,et al.  Error propagation for difference methods , 1963 .

[27]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[28]  H. Stetter Analysis of Discretization Methods for Ordinary Differential Equations , 1973 .

[29]  Peter D. Lax,et al.  Almost Periodic Solutions of the KdV Equation , 1976 .

[30]  M. Ablowitz,et al.  Discretizations, integrable systems and computation , 2001 .

[31]  L. R. Scott,et al.  Numerical schemes for a model for nonlinear dispersive waves , 1985 .

[32]  G. Derks,et al.  Dissipation in Hamiltonian systems: decaying cnoidal waves , 1996 .

[33]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[34]  Ernst Hairer,et al.  Asymptotic expansions of the global error of fixed-stepsize methods , 1984 .

[35]  D. H. Sattinger,et al.  Inversion of the linearized Korteweg-de Vries equation at the multisoliton solutions , 1998 .

[36]  Juan M. Restrepo,et al.  Stable and Unstable Solitary-Wave Solutions of the Generalized Regularized Long-Wave Equation , 2000, J. Nonlinear Sci..

[37]  A. Scott Encyclopedia of nonlinear science , 2006 .

[38]  D. Stoffer,et al.  Variable steps for reversible integration methods , 1995, Computing.

[39]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[40]  J. Pöschel,et al.  Inverse spectral theory , 1986 .

[41]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[42]  David W. McLaughlin,et al.  Multiphase averaging and the inverse spectral solution of the Korteweg—de Vries equation , 1980 .

[43]  R. Miura The Korteweg–deVries Equation: A Survey of Results , 1976 .

[44]  Sergei Petrovich Novikov,et al.  The periodic problem for the Korteweg—de vries equation , 1974 .

[45]  John D. Fenton,et al.  A Fourier method for solving nonlinear water-wave problems: application to solitary-wave interactions , 1982, Journal of Fluid Mechanics.

[46]  P. Henrici Discrete Variable Methods in Ordinary Differential Equations , 1962 .

[47]  B. Cano,et al.  Conserved quantities of some Hamiltonian wave equations after full discretization , 2006, Numerische Mathematik.

[48]  D. McLaughlin,et al.  Attractors and transients for a perturbed periodic KdV equation: A nonlinear spectral analysis , 1993 .

[49]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[50]  S. Faltinsen,et al.  Backward Error Analysis for Lie-Group Methods , 2000 .

[51]  Rafael de la Llave,et al.  Dynamics of algorithms , 2000 .

[52]  Ernst Hairer,et al.  Asymptotic expansions and backward analysis for numerical integrators , 2000 .

[53]  Peter D. Lax,et al.  Periodic solutions of the KdV equation , 2010 .

[54]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[55]  S. Gils,et al.  On the uniqueness of traveling waves in perturbed Korteweg-de Vries equations , 1993 .

[56]  C. Schober,et al.  Geometric integrators for the nonlinear Schrödinger equation , 2001 .

[57]  C. S. Gardner,et al.  Korteweg-devries equation and generalizations. VI. methods for exact solution , 1974 .