Time behaviour of the error when simulating finite-band periodic waves. The case of the KdV equation
暂无分享,去创建一个
[1] A. Durán,et al. The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation , 2000 .
[2] A. Scott,et al. The soliton: A new concept in applied science , 1973 .
[3] Sergei Petrovich Novikov,et al. NON-LINEAR EQUATIONS OF KORTEWEG-DE VRIES TYPE, FINITE-ZONE LINEAR OPERATORS, AND ABELIAN VARIETIES , 1976 .
[4] Uri M. Ascher,et al. On Symplectic and Multisymplectic Schemes for the KdV Equation , 2005, J. Sci. Comput..
[5] Alan C. Newell,et al. Solitons in mathematics and physics , 1987 .
[6] D. Korteweg,et al. XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .
[7] J. Sanz-Serna,et al. Accuracy and conservation properties in numerical integration: the case of the Korteweg-de Vries equation , 1997 .
[8] B. Cano,et al. Error Growth in the Numerical Integration of Periodic Orbits, with Application to Hamiltonian and Reversible Systems , 1997 .
[9] Henry P. McKean,et al. Hill’s Operator and Hyperelliptic Function Theory in the Presence of Infinitely Many Branch Points , 1976 .
[10] S. Kuksin. PERTURBATION THEORY FOR QUASIPERIODIC SOLUTIONS OF INFINITE-DIMENSIONAL HAMILTONIAN SYSTEMS, AND ITS APPLICATION TO THE KORTEWEG-DE VRIES EQUATION , 1989 .
[11] J. Maddocks,et al. On the stability of KdV multi‐solitons , 1993 .
[12] S. Reich. Backward Error Analysis for Numerical Integrators , 1999 .
[13] C. W. Gear,et al. Invariants and numerical methods for ODEs , 1992 .
[14] M. A. López-Marcos,et al. Conservative numerical methods for solitary wave interactions , 2003 .
[15] V. Zakharov,et al. Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .
[16] Mark J. Ablowitz,et al. Solitons and the Inverse Scattering Transform , 1981 .
[17] Brian E. Moore,et al. Backward error analysis for multi-symplectic integration methods , 2003, Numerische Mathematik.
[18] H. McKean,et al. The spectrum of Hill's equation , 1975 .
[19] E. Hairer,et al. Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .
[20] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[21] Igor Krichever,et al. Spectral theory of two-dimensional periodic operators and its applications , 1989 .
[22] G. Whitham,et al. Linear and Nonlinear Waves , 1976 .
[23] P. Olver. Applications of Lie Groups to Differential Equations , 1986 .
[24] Bengt Fornberg,et al. A numerical and theoretical study of certain nonlinear wave phenomena , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[25] D. McLaughlin. Modulations of KDV wavetrains , 1981 .
[26] Peter Henrici,et al. Error propagation for difference methods , 1963 .
[27] Michael I. Weinstein,et al. Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .
[28] H. Stetter. Analysis of Discretization Methods for Ordinary Differential Equations , 1973 .
[29] Peter D. Lax,et al. Almost Periodic Solutions of the KdV Equation , 1976 .
[30] M. Ablowitz,et al. Discretizations, integrable systems and computation , 2001 .
[31] L. R. Scott,et al. Numerical schemes for a model for nonlinear dispersive waves , 1985 .
[32] G. Derks,et al. Dissipation in Hamiltonian systems: decaying cnoidal waves , 1996 .
[33] P. Lax. INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .
[34] Ernst Hairer,et al. Asymptotic expansions of the global error of fixed-stepsize methods , 1984 .
[35] D. H. Sattinger,et al. Inversion of the linearized Korteweg-de Vries equation at the multisoliton solutions , 1998 .
[36] Juan M. Restrepo,et al. Stable and Unstable Solitary-Wave Solutions of the Generalized Regularized Long-Wave Equation , 2000, J. Nonlinear Sci..
[37] A. Scott. Encyclopedia of nonlinear science , 2006 .
[38] D. Stoffer,et al. Variable steps for reversible integration methods , 1995, Computing.
[39] E. Hairer,et al. Solving Ordinary Differential Equations II , 2010 .
[40] J. Pöschel,et al. Inverse spectral theory , 1986 .
[41] M. Ablowitz,et al. The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .
[42] David W. McLaughlin,et al. Multiphase averaging and the inverse spectral solution of the Korteweg—de Vries equation , 1980 .
[43] R. Miura. The Korteweg–deVries Equation: A Survey of Results , 1976 .
[44] Sergei Petrovich Novikov,et al. The periodic problem for the Korteweg—de vries equation , 1974 .
[45] John D. Fenton,et al. A Fourier method for solving nonlinear water-wave problems: application to solitary-wave interactions , 1982, Journal of Fluid Mechanics.
[46] P. Henrici. Discrete Variable Methods in Ordinary Differential Equations , 1962 .
[47] B. Cano,et al. Conserved quantities of some Hamiltonian wave equations after full discretization , 2006, Numerische Mathematik.
[48] D. McLaughlin,et al. Attractors and transients for a perturbed periodic KdV equation: A nonlinear spectral analysis , 1993 .
[49] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[50] S. Faltinsen,et al. Backward Error Analysis for Lie-Group Methods , 2000 .
[51] Rafael de la Llave,et al. Dynamics of algorithms , 2000 .
[52] Ernst Hairer,et al. Asymptotic expansions and backward analysis for numerical integrators , 2000 .
[53] Peter D. Lax,et al. Periodic solutions of the KdV equation , 2010 .
[54] S. Novikov,et al. Theory of Solitons: The Inverse Scattering Method , 1984 .
[55] S. Gils,et al. On the uniqueness of traveling waves in perturbed Korteweg-de Vries equations , 1993 .
[56] C. Schober,et al. Geometric integrators for the nonlinear Schrödinger equation , 2001 .
[57] C. S. Gardner,et al. Korteweg-devries equation and generalizations. VI. methods for exact solution , 1974 .