High-purity chalcogenide glasses for fiber optics

The data on the present degree of purity of chalcogenide glasses for fiber optics, on their methods of production and on the properties, which are essential for their actual application, are generalized. The content of limiting impurities in the best samples of chalcogenide glasses is 10–100 ppb wt.; of heterophase inclusions with size of about 100 nm is less than 103 cm−3. On the basis of chalcogenide glasses the multimode and single mode optical fibers are produced with technical and operation characteristics sufficient for a number of actual applications. The minimum optical losses of 12–14 dB/km at 3–5 µm are attained in the optical fiber from arsenic-sulfide glass. The level of losses in standard chalcogenide optical fibers is 50–300 dB/km in 2–9 µm spectral range. The factors, affecting the optical absorption of glasses and optical fibers, are analyzed, and the main directions in further development of chalcogenide glasses as the materials for fiber optics are considered.

[1]  Eugeni M. Dianov,et al.  Low-loss infrared arsenic-chalcogenide glass optical fibers , 2000, Other Conferences.

[2]  Jean-Luc Adam,et al.  Study of characteristic temperatures and nonisothermal crystallization kinetics in AsSeTe glass system , 2005 .

[3]  Andrian I. Kouznetsov,et al.  Tunable diode laser spectroscopy accessories based on middle IR halide and chalcogenide fibers , 1992, Other Conferences.

[4]  Toshio Katsuyama,et al.  Infrared optical fibers , 1989 .

[5]  J. E. Griffiths,et al.  Reversible reconstruction and crystallization of GeSe2 glass , 1981 .

[6]  Jacques Lucas,et al.  Tex-glass infrared optical fibers delivering medium power from a CO2 laser , 1999 .

[7]  Leslie Brandon Shaw,et al.  Rare-earth doped selenide glasses and fibers for active applications in the near and mid-IR , 1999 .

[8]  G. G. Devyatykh,et al.  Single-Mode As–S Glass Fibers , 2003 .

[9]  C H GRAHAM,et al.  Luminance thresholds for the resolution of visual detail during dark adaptation. , 1953, Journal of the Optical Society of America.

[10]  V A Kamensky,et al.  High-Power As-S Glass Fiber Delivery Instrument for Pulse YAG:Er Laser Radiation. , 1998, Applied optics.

[11]  G. G. Devyatykh,et al.  Recent developments in As-S glass fibres , 1999 .

[12]  James R. Varner,et al.  Density and microhardness of As Se glasses and glass fibers , 1997 .

[13]  V. G. Plotnichenko,et al.  HIGH-PURITY GLASSES BASED ON ARSENIC CHALCOGENIDES , 2001 .

[14]  Benjamin J. Eggleton,et al.  Advances in fiber optics , 2000, Bell Labs Technical Journal.

[15]  Takashi Yamagishi,et al.  Optical and thermal properties of chalcogenide Ge-As-Se-Te glasses for IR fibers , 1987 .

[16]  V. Shiryaev,et al.  Formation of Second-Phase Inclusions in Molten As2Se3 via Chemical Transport of Carbon , 2001 .

[17]  Jasbinder S. Sanghera,et al.  Active and passive chalcogenide glass optical fibers for IR applications: a review , 1999 .

[18]  Brian S. Wherrett,et al.  Near-infrared optical nonlinearities in amorphous chalcogenides , 1994 .

[19]  S. Elliott,et al.  Optical Nonlinearities in Chalcogenide Glasses and Their Applications , 2007 .

[20]  J. Adam,et al.  Calorimetric study of characteristic temperatures and crystallization behavior in Ge–As–Se–Te glass system , 2004 .

[21]  Johann Troles,et al.  Chalcogenide glasses as solid state optical limiters at 1.064 μm , 2004 .

[22]  L. Brilland,et al.  Synthesis and characterization of chalcogenide glasses from the system Ga–Ge–Sb–S and preparation of a single-mode fiber at 1.55 μm , 2008 .

[23]  V. S. Polyakov,et al.  Origin of microinhomogeneities in As-S-Se glass fibers fabricated by the double-crucible method , 2007 .

[24]  D. W. Henderson,et al.  Viscosity and crystallization kinetics of As2Se3 , 1984 .

[25]  M. Churbanov,et al.  High-purity chalcogenide glasses as materials for fiber optics , 1995 .

[26]  Jean-Luc Adam,et al.  Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content , 2005 .

[27]  A. Villeneuve,et al.  Comparison of nonlinear optical properties of sulfide glasses in bulk and thin film form , 1998 .

[28]  Ishwar D. Aggarwal,et al.  Fabrication of Arsenic Sulfide Optical Fiber with Low Hydrogen Impurities , 2002 .

[29]  Jean-Luc Adam,et al.  Infrared fibers based on Te–As–Se glass system with low optical losses , 2004 .

[30]  Angela B. Seddon,et al.  Glass formation in the Te-enriched part of the quaternary Ge–As–Se–Te system and its implication for mid-infrared optical fibres , 2004 .

[31]  S. Sakuragi,et al.  Infrared image guide with bundled As-S glass fibers. , 1985, Applied optics.

[32]  T. Wágner,et al.  Structure and imaging properties of As40S60−xSex glasses , 2000 .

[33]  E. B. Kryukova,et al.  Effect of Oxygen Impurity on the Optical Transmission of As2Se3.4Glass , 2001 .

[34]  M. E. Lines,et al.  Scattering losses in optic fiber materials. II. Numerical estimates , 1984 .

[35]  Kathleen Richardson,et al.  Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films , 2008 .

[36]  M. Churbanov,et al.  Recent advances in preparation of high-purity chalcogenide glasses in the USSR , 1992 .

[37]  M. Churbanov,et al.  Flow of a Viscoplastic Arsenic Selenide Melt in Circular-Cylindrical Channels , 2005 .

[38]  Jean-Luc Adam,et al.  A new approach of preform fabrication for chalcogenide fibers , 2003 .

[39]  F. Wise,et al.  Highly nonlinear Ge-As-Se and Ge-As-S-Se glasses for all-optical switching , 2002, IEEE Photonics Technology Letters.

[40]  E. B. Kryukova,et al.  Effects of oxygen and carbon impurities on the optical transmission of As2Se3 glass , 2005 .

[41]  Adalbert Feltz,et al.  Amorphous Inorganic Materials and Glasses , 1993 .

[42]  M. Churbanov,et al.  Flow of a viscoplastic arsenic selenide melt in annular channels , 2006 .

[43]  V. G. Plotnichenko,et al.  Optical fibers based on As–S–Se glass system , 2001 .

[45]  W. A. King,et al.  Metastable, drawing-induced crystallization in As2Se3 fibers , 1998 .

[46]  Leslie Brandon Shaw,et al.  Non-linear properties of chalcogenide glasses and fibers , 2008 .

[47]  N. S. Kapany,et al.  Recent developments in infrared fiber optics , 1965 .

[48]  Jasbinder S. Sanghera,et al.  Development of low-loss IR transmitting chalcogenide glass fibers , 1995, Photonics West.

[49]  Jasbinder S. Sanghera,et al.  Infrared Fiber Optics , 1998 .

[50]  Ishwar D. Aggarwal,et al.  Infrared Evanescent Absorption Spectroscopy of Toxic Chemicals Using Chalcogenide Glass Fibers , 1995 .

[51]  M. Churbanov,et al.  Chapter 5 Optical fibers from high-purity arsenic chalcogenide glasses , 2004 .

[52]  Y. Ohishi,et al.  Optical amplification with neodymium-doped chalcogenide glass fiber , 1997 .

[53]  Valentina F. Kokorina,et al.  Glasses for Infrared Optics , 1996 .

[54]  Ishwar D. Aggarwal,et al.  Fabrication of low-loss IR-transmitting Ge/sub 30/As/sub 10/Se/sub 30/Te/sub 30/ glass fibers , 1994 .

[55]  V. Shiryaev,et al.  High-Purity As2S1.5Se1.5 Glass Optical Fibers , 2002 .

[56]  Victor G. Plotnichenko,et al.  Chalcogenide glasses doped with Tb, Dy and Pr ions , 2003 .

[57]  博倫 武部,et al.  Ge-Sb-Sガラスの熱的安定性と構造 , 2003 .

[58]  A. M. Potapov,et al.  Heterophase inclusions and dissolved impurities in Ge25Sb10S65 glass , 2009 .

[59]  Jacques Lucas,et al.  Chalcogenide glasses with large non-linear refractive indices , 1998 .

[60]  M. D. Baró,et al.  DSC study of some Ge-Sb-S glasses , 1991, Journal of Materials Science.

[61]  Takashi Yamagishi,et al.  Recent advances and trends in chalcogenide glass fiber technology: a review , 1992 .

[62]  S. Fayek,et al.  Study of non-isothermal kinetics and thermal characterization of AsSeTe system , 1996 .

[63]  T. Katsuyama,et al.  Low loss Ge‐Se chalcogenide glass optical fibers , 1984 .

[64]  Jacques Lucas,et al.  Chalcogens based glasses for IR fiber chemical sensors , 2001 .

[65]  M. Horiguchi,et al.  Preparation of Ge-S Glass Fibers with Reduced OH, SH Content , 1981 .

[66]  Michel Couzi,et al.  Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S , 2006 .

[67]  Masaki Asobe,et al.  Nonlinear Optical Properties of Chalcogenide Glass Fibers and Their Application to All-Optical Switching , 1997 .

[68]  Hiroshi Suto Chalcogenide fiber bundle for 3D spectroscopy , 1997 .

[69]  V. Shiryaev,et al.  Stability of the Optical and Mechanical Properties of Chalcogenide Fibers , 2002 .

[70]  Virginie Nazabal,et al.  Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers , 2009 .

[71]  Алексей Михайлович Желтиков Микроструктурированные световоды для нового поколения волоконно-оптических источников и преобразователей световых импульсов , 2007 .