Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions
暂无分享,去创建一个
[1] G. Stewart. Introduction to matrix computations , 1973 .
[2] Alicja Smoktunowicz,et al. Binary cascades iterative refinement in doubled-mantissa arithmetics , 1984 .
[3] Edward Anderson. Robust Triangular Solves for Use in Condition Estimation , 1991 .
[4] Nicholas J. Higham,et al. Accuracy and stability of numerical algorithms, Second Edition , 2002 .
[5] Jörg Liesen,et al. The Worst-Case GMRES for Normal Matrices , 2004 .
[6] Jennifer A. Scott,et al. A fast and robust mixed-precision solver for the solution of sparse symmetric linear systems , 2010, TOMS.
[7] Jack Dongarra,et al. Linear algebra software for large-scale accelerated multicore computing* , 2016, Acta Numerica.
[8] James Demmel,et al. Faster Numerical Algorithms via Exception Handling , 1994, IEEE Trans. Computers.
[9] N. Higham. Iterative refinement enhances the stability ofQR factorization methods for solving linear equations , 1991 .
[10] Jack Dongarra,et al. Numerical linear algebra on emerging architectures: The PLASMA and MAGMA projects , 2009 .
[11] J. L. Rigal,et al. On the Compatibility of a Given Solution With the Data of a Linear System , 1967, JACM.
[12] W. Prager,et al. Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides , 1964 .
[13] Anne Greenbaum,et al. Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..
[14] Jack J. Dongarra,et al. Investigating half precision arithmetic to accelerate dense linear system solvers , 2017, ScalA@SC.
[15] Andrzej Kiełbasiński,et al. Iterative refinement for linear systems in variable-precision arithmetic , 1981 .
[16] H. D. Huskey,et al. NOTES ON THE SOLUTION OF ALGEBRAIC LINEAR SIMULTANEOUS EQUATIONS , 1948 .
[17] Eric de Sturler,et al. Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..
[18] Cleve B. Moler,et al. Iterative Refinement in Floating Point , 1967, JACM.
[19] Willard L. Miranker,et al. Fast Hybrid Solution of Algebraic Systems , 1990, SIAM J. Sci. Comput..
[20] M. SIAMJ.,et al. NEWTON’S METHOD IN FLOATING POINT ARITHMETIC AND ITERATIVE REFINEMENT OF GENERALIZED EIGENVALUE PROBLEMS∗ , 1999 .
[21] J. Dongarra,et al. Exploiting the Performance of 32 bit Floating Point Arithmetic in Obtaining 64 bit Accuracy (Revisiting Iterative Refinement for Linear Systems) , 2006, ACM/IEEE SC 2006 Conference (SC'06).
[22] J. Demmel,et al. Solving Sparse Linear Systems with Sparse Backward Error , 2015 .
[23] Jennifer A. Scott,et al. Chebyshev acceleration of iterative refinement , 2014, Numerical Algorithms.
[24] Joseph R. Shinnerl,et al. On the Stability of Cholesky Factorization for Symmetric Quasidefinite Systems , 1996, SIAM J. Matrix Anal. Appl..
[25] James Hardy Wilkinson,et al. Rounding errors in algebraic processes , 1964, IFIP Congress.
[26] N. Higham. Iterative refinement for linear systems and LAPACK , 1997 .
[27] H. Wozniakowski,et al. Iterative refinement implies numerical stability , 1977 .
[28] Miroslav Rozlozník,et al. Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES , 2006, SIAM J. Matrix Anal. Appl..
[29] Z. Zlatev. Use of Iterative Refinement in the Solution of Sparse Linear Systems , 1982 .
[30] I. Duff,et al. Using FGMRES to obtain backward stability in mixed precision , 2008 .
[31] R. Skeel. Iterative refinement implies numerical stability for Gaussian elimination , 1980 .
[32] Nicholas J. Higham,et al. A New Analysis of Iterative Refinement and Its Application to Accurate Solution of Ill-Conditioned Sparse Linear Systems , 2017, SIAM J. Sci. Comput..
[33] Serge Gratton,et al. A Note on GMRES Preconditioned by a Perturbed L D LT Decomposition with Static Pivoting , 2007, SIAM J. Sci. Comput..
[34] J. H. Wilkinson. Modern Error Analysis , 1971 .