Symbolic blowup algebras and invariants associated to certain monomial curves in
暂无分享,去创建一个
[1] B. Harbourne,et al. Inductively computable unions of fat linear subspaces , 2015 .
[2] Susan M. Cooper,et al. The Waldschmidt constant for squarefree monomial ideals , 2015, 1508.00477.
[3] B. Harbourne,et al. Resurgences for ideals of special point configurations in ${\bf P}^N$ coming from hyperplane arrangements , 2014, 1404.4957.
[4] B. Harbourne,et al. Asymptotic resurgences for ideals of positive dimensional subschemes of projective space , 2012, 1202.4370.
[5] Jürgen Herzog,et al. Grobner Bases in Commutative Algebra , 2011 .
[6] B. Harbourne,et al. ARE SYMBOLIC POWERS HIGHLY EVOLVED , 2011, 1103.5809.
[7] C. Bocci,et al. The resurgence of ideals of points and the containment problem , 2009, 0906.4478.
[8] Charles W. Wampler,et al. Interactions of Classical and Numerical Algebraic Geometry , 2009 .
[9] S. Rocco,et al. A primer on Seshadri constants , 2008, 0810.0728.
[10] C. Bocci,et al. Comparing powers and symbolic powers of ideals , 2007, 0706.3707.
[11] Marc Chardin,et al. SOME RESULTS AND QUESTIONS ON CASTELNUOVO-MUMFORD REGULARITY , 2005 .
[12] M. Hochster,et al. Comparison of symbolic and ordinary powers of ideals , 2002, math/0211174.
[13] Robert Lazarsfeld,et al. Uniform bounds and symbolic powers on smooth varieties , 2000, math/0005098.
[14] J. Herzog,et al. Asymptotic Behaviour of the Castelnuovo-Mumford Regularity , 1999, Compositio Mathematica.
[15] S. D. Cutkosky,et al. Irrational Asymptotic Behaviour of Castelnuovo-Mumford Regularity , 1999, math/9902037.
[16] A. Simis,et al. Arithmetically cohen-macaulay monomial curves in ℙ3 , 1993 .
[17] P. Schenzel. Examples of Gorenstein domains and symbolic powers of monomial space curves , 1991 .
[18] L. O'Carroll,et al. EQUIMULTIPLICITY AND BLOWING UP: An Algebraic Study with an Appendix by B. Moonen , 1990 .
[19] Shin Ikeda,et al. Equimultiplicity and blowing up , 1988 .
[20] C. Huneke. The theory of d-sequences and powers of ideals , 1982 .
[21] C. Huneke. On the Symmetric and Rees Algebra of an Ideal Generated by a d-sequence , 1980 .
[22] M. Waldschmidt. Propriétes arithmétiques de fonctions de plusieurs variables (I) , 1976 .