Symbolic blowup algebras and invariants associated to certain monomial curves in

Abstract In this paper we explicitly describe the symbolic powers of the ideal defining the curve in parametrized by where q, m are positive integers, and We show that the symbolic blowup algebra is Noetherian and Gorenstein. An explicit formula for the resurgence and the Waldschmidt constant of the prime ideal defining the curve is computed. We also give a formula for the Castelnuovo-Mumford regularity of the symbolic powers for all

[1]  B. Harbourne,et al.  Inductively computable unions of fat linear subspaces , 2015 .

[2]  Susan M. Cooper,et al.  The Waldschmidt constant for squarefree monomial ideals , 2015, 1508.00477.

[3]  B. Harbourne,et al.  Resurgences for ideals of special point configurations in ${\bf P}^N$ coming from hyperplane arrangements , 2014, 1404.4957.

[4]  B. Harbourne,et al.  Asymptotic resurgences for ideals of positive dimensional subschemes of projective space , 2012, 1202.4370.

[5]  Jürgen Herzog,et al.  Grobner Bases in Commutative Algebra , 2011 .

[6]  B. Harbourne,et al.  ARE SYMBOLIC POWERS HIGHLY EVOLVED , 2011, 1103.5809.

[7]  C. Bocci,et al.  The resurgence of ideals of points and the containment problem , 2009, 0906.4478.

[8]  Charles W. Wampler,et al.  Interactions of Classical and Numerical Algebraic Geometry , 2009 .

[9]  S. Rocco,et al.  A primer on Seshadri constants , 2008, 0810.0728.

[10]  C. Bocci,et al.  Comparing powers and symbolic powers of ideals , 2007, 0706.3707.

[11]  Marc Chardin,et al.  SOME RESULTS AND QUESTIONS ON CASTELNUOVO-MUMFORD REGULARITY , 2005 .

[12]  M. Hochster,et al.  Comparison of symbolic and ordinary powers of ideals , 2002, math/0211174.

[13]  Robert Lazarsfeld,et al.  Uniform bounds and symbolic powers on smooth varieties , 2000, math/0005098.

[14]  J. Herzog,et al.  Asymptotic Behaviour of the Castelnuovo-Mumford Regularity , 1999, Compositio Mathematica.

[15]  S. D. Cutkosky,et al.  Irrational Asymptotic Behaviour of Castelnuovo-Mumford Regularity , 1999, math/9902037.

[16]  A. Simis,et al.  Arithmetically cohen-macaulay monomial curves in ℙ3 , 1993 .

[17]  P. Schenzel Examples of Gorenstein domains and symbolic powers of monomial space curves , 1991 .

[18]  L. O'Carroll,et al.  EQUIMULTIPLICITY AND BLOWING UP: An Algebraic Study with an Appendix by B. Moonen , 1990 .

[19]  Shin Ikeda,et al.  Equimultiplicity and blowing up , 1988 .

[20]  C. Huneke The theory of d-sequences and powers of ideals , 1982 .

[21]  C. Huneke On the Symmetric and Rees Algebra of an Ideal Generated by a d-sequence , 1980 .

[22]  M. Waldschmidt Propriétes arithmétiques de fonctions de plusieurs variables (I) , 1976 .