Globally convergent autocalibration using interval analysis

We address the problem of autocalibration of a moving camera with unknown constant intrinsic parameters. Existing autocalibration techniques use numerical optimization algorithms whose convergence to the correct result cannot be guaranteed, in general. To address this problem, we have developed a method where an interval branch-and-bound method is employed for numerical minimization. Thanks to the properties of interval analysis this method converges to the global solution with mathematical certainty and arbitrary accuracy and the only input information it requires from the user are a set of point correspondences and a search interval. The cost function is based on the Huang-Faugeras constraint of the essential matrix. A recently proposed interval extension based on Bernstein polynomial forms has been investigated to speed up the search for the solution. Finally, experimental results are presented.

[1]  Olivier D. Faugeras,et al.  Some Properties of the E Matrix in Two-View Motion Estimation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  J. Oliensis,et al.  Fast and accurate self-calibration , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[3]  R. Baker Kearfott,et al.  The cluster problem in multivariate global optimization , 1994, J. Glob. Optim..

[4]  K. Kotecha,et al.  An Algorithm for Global Optimization using the Taylor–Bernstein Form as Inclusion Function , 2002, J. Glob. Optim..

[5]  Manolis I. A. Lourakis,et al.  Camera Self-Calibration Using the Singular Value Decomposition of the Fundamental Matrix: From Point Correspondences to 3D Measurements , 1999 .

[6]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[7]  Richard I. Hartley,et al.  Kruppa's Equations Derived from the Fundamental Matrix , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Arnold Neumaier,et al.  Taylor Forms—Use and Limits , 2003, Reliab. Comput..

[9]  FusielloAndrea,et al.  Globally Convergent Autocalibration Using Interval Analysis , 2004 .

[10]  Reinhard Koch,et al.  Self-Calibration and Metric Reconstruction Inspite of Varying and Unknown Intrinsic Camera Parameters , 1999, International Journal of Computer Vision.

[11]  Richard I. Hartley,et al.  Theory and Practice of Projective Rectification , 1999, International Journal of Computer Vision.

[12]  Peter F. Sturm,et al.  A Case Against Kruppa's Equations for Camera Self-Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Bill Triggs,et al.  Autocalibration and the absolute quadric , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  Paul A. Beardsley,et al.  Sequential Updating of Projective and Affine Structure from Motion , 1997, International Journal of Computer Vision.

[15]  Luc Van Gool,et al.  A stratified approach to metric self-calibration , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Gerhard Roth,et al.  Some improvements on two autocalibration algorithms based on the fundamental matrix , 2002, Object recognition supported by user interaction for service robots.

[17]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Quang-Tuan Luong,et al.  Self-Calibration of a Moving Camera from Point Correspondences and Fundamental Matrices , 1997, International Journal of Computer Vision.

[19]  J. Miller Numerical Analysis , 1966, Nature.

[20]  Peter Sturm,et al.  On focal length calibration from two views , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[21]  Andrew Zisserman,et al.  Multiple view geometry in computer visiond , 2001 .

[22]  David F. Rogers,et al.  Mathematical elements for computer graphics (2nd ed.) , 1989 .

[23]  Richard I. Hartley,et al.  Estimation of Relative Camera Positions for Uncalibrated Cameras , 1992, ECCV.

[24]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[25]  Thomas S. Huang,et al.  Motion and structure from feature correspondences: a review , 1994, Proc. IEEE.

[26]  S. Bougnoux,et al.  From projective to Euclidean space under any practical situation, a criticism of self-calibration , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[27]  Fumiaki Tomita,et al.  A Factorization Method for Projective and Euclidean Reconstruction from Multiple Perspective Views via Iterative Depth Estimation , 1998, ECCV.

[28]  Paulo R. S. Mendonça,et al.  A simple technique for self-calibration , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[29]  Ian D. Reid,et al.  Camera calibration and the search for infinity , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[30]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics (Revised Edition) , 1999 .

[31]  Jean Ponce,et al.  On Computing Metric Upgrades of Projective Reconstructions Under the Rectangular Pixel Assumption , 2000, SMILE.

[32]  M. Berz,et al.  TAYLOR MODELS AND OTHER VALIDATED FUNCTIONAL INCLUSION METHODS , 2003 .

[33]  Richard I. Hartley,et al.  In defence of the 8-point algorithm , 1995, Proceedings of IEEE International Conference on Computer Vision.

[34]  Olivier D. Faugeras,et al.  The fundamental matrix: Theory, algorithms, and stability analysis , 2004, International Journal of Computer Vision.

[35]  Anders Heyden,et al.  Minimal Conditions on Intrinsic Parameters for Euclidean Reconstruction , 1998, ACCV.

[36]  Rajiv Gupta,et al.  Stereo from uncalibrated cameras , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[37]  Anders Heyden,et al.  Euclidean reconstruction from image sequences with varying and unknown focal length and principal point , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[38]  Reinhard Koch,et al.  Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[39]  Thierry Viéville,et al.  Canonical Representations for the Geometries of Multiple Projective Views , 1996, Comput. Vis. Image Underst..

[40]  Olivier D. Faugeras,et al.  A theory of self-calibration of a moving camera , 1992, International Journal of Computer Vision.

[41]  Sudhir P. Mudur,et al.  Mathematical Elements for Computer Graphics , 1985, Advances in Computer Graphics.

[42]  Olivier D. Faugeras,et al.  A Comparison of Projective Reconstruction Methods for Pairs of Views , 1997, Comput. Vis. Image Underst..

[43]  Andrea Fusiello,et al.  Uncalibrated Euclidean reconstruction: a review , 2000, Image Vis. Comput..

[44]  A. Heyden,et al.  Euclidean reconstruction from constant intrinsic parameters , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[45]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[46]  O. Faugeras,et al.  Camera Self-Calibration from Video Sequences: the Kruppa Equations Revisited , 1996 .

[47]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .