Sparse EEG/MEG source estimation via a group lasso

Non-invasive recordings of human brain activity through electroencephalography (EEG) or magnetoencelphalography (MEG) are of value for both basic science and clinical applications in sensory, cognitive, and affective neuroscience. Here we introduce a new approach to estimating the intra-cranial sources of EEG/MEG activity measured from extra-cranial sensors. The approach is based on the group lasso, a sparse-prior inverse that has been adapted to take advantage of functionally-defined regions of interest for the definition of physiologically meaningful groups within a functionally-based common space. Detailed simulations using realistic source-geometries and data from a human Visual Evoked Potential experiment demonstrate that the group-lasso method has improved performance over traditional ℓ2 minimum-norm methods. In addition, we show that pooling source estimates across subjects over functionally defined regions of interest results in improvements in the accuracy of source estimates for both the group-lasso and minimum-norm approaches.

[1]  Robert D. Nowak,et al.  Space–time event sparse penalization for magneto-/electroencephalography , 2009, NeuroImage.

[2]  K. Matsuura,et al.  Selective minimum-norm solution of the biomagnetic inverse problem , 1995, IEEE Transactions on Biomedical Engineering.

[3]  Polina Golland,et al.  A distributed spatio-temporal EEG/MEG inverse solver , 2009, NeuroImage.

[4]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[5]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[6]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[7]  Lei Ding,et al.  Sparse cortical current density imaging in motor potentials induced by finger movement , 2011, Journal of neural engineering.

[8]  Julia P. Owen,et al.  Robust Bayesian estimation of the location, orientation, and time course of multiple correlated neural sources using MEG , 2010, NeuroImage.

[9]  S. Ullman,et al.  Retinotopic Axis Specificity and Selective Clustering of Feedback Projections from V2 to V1 in the Owl Monkey , 2005, The Journal of Neuroscience.

[10]  Benoit Cottereau,et al.  The time course of shape discrimination in the human brain , 2013, NeuroImage.

[11]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[12]  Barry D. Van Veen,et al.  Cortical patch basis model for spatially extended neural activity , 2006, IEEE Transactions on Biomedical Engineering.

[13]  Liang Wang,et al.  Probabilistic Maps of Visual Topography in Human Cortex. , 2015, Cerebral cortex.

[14]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[15]  Eduardo Martínez-Montes,et al.  Identifying Complex Brain Networks Using Penalized Regression Methods , 2008, Journal of biological physics.

[16]  Thomas R. Knösche,et al.  Prior knowledge on cortex organization in the reconstruction of source current densities from EEG , 2013, NeuroImage.

[17]  Karl J. Friston,et al.  An empirical Bayesian solution to the source reconstruction problem in EEG , 2005, NeuroImage.

[18]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[19]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[20]  Hagai Attias,et al.  A graphical model for estimating stimulus-evoked brain responses from magnetoencephalography data with large background brain activity , 2006, NeuroImage.

[21]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[22]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[23]  Karl J. Friston,et al.  Electromagnetic source reconstruction for group studies , 2008, NeuroImage.

[24]  Benoit Cottereau,et al.  The evolution of a disparity decision in human visual cortex , 2014, NeuroImage.

[25]  L. Kaufman,et al.  Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation , 1992, IEEE Transactions on Biomedical Engineering.

[26]  Karl J. Friston,et al.  A Parametric Empirical Bayesian Framework for the EEG/MEG Inverse Problem: Generative Models for Multi-Subject and Multi-Modal Integration , 2011, Front. Hum. Neurosci..

[27]  Justin M. Ales,et al.  The steady-state visual evoked potential in vision research: A review. , 2015, Journal of vision.

[28]  Eli Brenner,et al.  Reliable Identification by Color under Natural Conditions the Locations Baseline Measurement , 2022 .

[29]  A. Parker,et al.  A specialization for relative disparity in V2 , 2002, Nature Neuroscience.

[30]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[31]  D. A. Driscoll,et al.  EEG electrode sensitivity--an application of reciprocity. , 1969, IEEE transactions on bio-medical engineering.

[32]  Julia P. Owen,et al.  Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data , 2012, NeuroImage.

[33]  Justin M. Ales,et al.  Assessing direction-specific adaptation using the steady-state visual evoked potential: results from EEG source imaging. , 2009, Journal of vision.

[34]  Benoit Cottereau,et al.  Multiresolution imaging of MEG cortical sources using an explicit piecewise model , 2007, NeuroImage.

[35]  Alex R. Wade,et al.  Functional measurements of human ventral occipital cortex: retinotopy and colour. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[36]  Anders M Dale,et al.  Improved method for retinotopy constrained source estimation of visual‐evoked responses , 2011, Human brain mapping.

[37]  Bevil R. Conway,et al.  Toward a Unified Theory of Visual Area V 4 , 2012 .

[38]  Thomas Haarmeier,et al.  Processing of Coherent Visual Motion in Topographically Organized Visual Areas in Human Cerebral Cortex , 2012, Brain Topography.

[39]  D. Lehmann,et al.  Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. , 1994, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[40]  Stephen J. Wright,et al.  Sparse reconstruction by separable approximation , 2009, IEEE Trans. Signal Process..

[41]  A. Gramfort,et al.  Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods , 2012, Physics in medicine and biology.

[42]  Polina Golland,et al.  A Distributed Spatio-temporal EEG/MEG Inverse Solver , 2008, MICCAI.

[43]  I F Gorodnitsky,et al.  Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. , 1995, Electroencephalography and clinical neurophysiology.

[44]  Anthony M Norcia,et al.  Increasing the accuracy of electromagnetic inverses using functional area source correlation constraints , 2012, Human brain mapping.

[45]  Alex R. Wade,et al.  Cue-Invariant Networks for Figure and Background Processing in Human Visual Cortex , 2006, The Journal of Neuroscience.

[46]  R. Tootell,et al.  Where is 'dorsal V4' in human visual cortex? Retinotopic, topographic and functional evidence. , 2001, Cerebral cortex.

[47]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[48]  Noah Simon,et al.  A Sparse-Group Lasso , 2013 .

[49]  Stanley A. Klein,et al.  The folding fingerprint of visual cortex reveals the timing of human V1 and V2 , 2010, NeuroImage.

[50]  P. Downing,et al.  The neural basis of visual body perception , 2007, Nature Reviews Neuroscience.

[51]  Yi Chen,et al.  Encoding the identity and location of objects in human LOC , 2011, NeuroImage.

[52]  Bart Vanrumste,et al.  Journal of Neuroengineering and Rehabilitation Open Access Review on Solving the Inverse Problem in Eeg Source Analysis , 2022 .

[53]  Jonathan Winawer,et al.  Use of a prior to improving the retinotopic maps of individual subjects. , 2015, Journal of vision.

[54]  David P. Wipf,et al.  A unified Bayesian framework for MEG/EEG source imaging , 2009, NeuroImage.

[55]  Fa-Hsuan Lin,et al.  Sparse current source estimation for MEG using loose orientation constraints , 2013, Human brain mapping.

[56]  Bevil R. Conway,et al.  Toward a Unified Theory of Visual Area V4 , 2012, Neuron.

[57]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[58]  Karl J. Friston,et al.  Multiple sparse priors for the M/EEG inverse problem , 2008, NeuroImage.

[59]  C D Frith,et al.  Modulating irrelevant motion perception by varying attentional load in an unrelated task. , 1997, Science.

[60]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[61]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[62]  Zhimin Li,et al.  A spatio-temporal solution for the EEG/MEG inverse problem using group penalization methods , 2011 .

[63]  Lei Ding,et al.  Sparse source imaging in electroencephalography with accurate field modeling , 2008, Human brain mapping.

[64]  Stanley A. Klein,et al.  The folding fingerprint of visual cortex reveals the timing of human V1 and V2 , 2007 .

[65]  David J. Heeger,et al.  Pattern-motion responses in human visual cortex , 2002, Nature Neuroscience.

[66]  Justin M. Ales,et al.  How to use fMRI functional localizers to improve EEG/MEG source estimation , 2015, Journal of Neuroscience Methods.

[67]  Takeo Watanabe,et al.  Separate Processing of Different Global-Motion Structures in Visual Cortex Is Revealed by fMRI , 2005, Current Biology.

[68]  Jonathan Winawer,et al.  Imaging retinotopic maps in the human brain , 2011, Vision Research.

[69]  E. Somersalo,et al.  Visualization of Magnetoencephalographic Data Using Minimum Current Estimates , 1999, NeuroImage.

[70]  Karl J. Friston,et al.  Canonical Source Reconstruction for MEG , 2007, Comput. Intell. Neurosci..

[71]  W. Ritter,et al.  The sources of auditory evoked responses recorded from the human scalp. , 1970, Electroencephalography and clinical neurophysiology.

[72]  S. L. Gonzalez Andino,et al.  Basic limitations of linear inverse solutions: a case study , 1998 .

[73]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[74]  D. Hagler Optimization of retinotopy constrained source estimation constrained by prior , 2014, Human brain mapping.

[75]  C. Metz ROC Methodology in Radiologic Imaging , 1986, Investigative radiology.