Floquet Bundles for Tridiagonal Competitive-Cooperative Systems and the Dynamics of Time-Recurrent Systems

We consider a general time-dependent linear competitive-cooperative tridiagonal system of differential equations in the framework of skew-product flows and obtain canonical Floquet invariant bundles which are exponentially separated. Such Floquet bundles naturally reduce to the standard Floquet space when the system is assumed to be time-periodic. We apply the Floquet theory so obtained to study the dynamics on the hyperbolic omega-limit sets for the nonlinear competitive-cooperative tridiagonal systems in time-recurrent structures including almost periodicity and almost automorphy.

[1]  P. Polácik,et al.  Chapter 16 - Parabolic Equations: Asymptotic Behavior and Dynamics on Invariant Manifolds , 2002 .

[2]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[3]  George R. Sell,et al.  A Spectral Theory for Linear Differential Systems , 1978 .

[4]  Hal L. Smith Periodic tridiagonal competitive and cooperative systems of differential equations , 1991 .

[5]  Yingfei Yi,et al.  Asymptotic Almost Periodicity of Scalar Parabolic Equations with Almost Periodic Time Dependence , 1995 .

[6]  Hiroshi Matano,et al.  Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation , 1982 .

[7]  J. Smillie Competitive and Cooperative Tridiagonal Systems of Differential Equations , 1984 .

[8]  Giorgio Fusco,et al.  Jacobi matrices and transversality , 1987, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[9]  J. Mierczynski,et al.  The C1 Property of Carrying Simplices for a Class of Competitive Systems of ODEs , 1994 .

[10]  Yingfei Yi,et al.  Dynamics of Almost Periodic Scalar Parabolic Equations , 1995 .

[11]  Yingfei Yi,et al.  Stability of Integral Manifold and Orbital Attraction of Quasi-periodic Motion , 1993 .

[12]  J. K. Hale,et al.  Competition for fluctuating nutrient , 1983 .

[13]  Yingfei Yi,et al.  Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows , 1998 .

[14]  George A. Elliott,et al.  K-theory , 1999 .

[15]  A. Fink Almost Periodic Differential Equations , 1974 .

[16]  Karl Nickel,et al.  Gestaltaussagen über Lösungen parabolischer Differentialgleichungen. , 1962 .

[17]  Shui-Nee Chow,et al.  Floquet Theory for Parabolic Differential Equations , 1994 .

[18]  John Mallet-Paret,et al.  Floquet bundles for scalar parabolic equations , 1995 .

[19]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[20]  George R. Sell,et al.  Dichotomies for linear evolutionary equations in Banach spaces , 1994 .

[21]  Giorgio Fusco,et al.  Transversality between invariant manifolds of periodic orbits for a class of monotone dynamical systems , 1990 .

[22]  Janusz Mierczyński,et al.  Exponential separation and principal Lyapunov exponent/spectrum for random/nonautonomous parabolic equations , 2003 .

[23]  Georg Hetzer,et al.  Convergence in Almost Periodic Competition Diffusion Systems , 2001 .

[24]  Yi Wang,et al.  Dynamics of nonautonomous tridiagonal competitive–cooperative systems of differential equations , 2007 .

[25]  G. Sell,et al.  Systems of Differential Delay Equations: Floquet Multipliers and Discrete Lyapunov Functions , 1996 .

[26]  Antonio Tineo,et al.  On tridiagonal predator–prey systems and a conjecture , 2010 .

[27]  Shui-Nee Chow,et al.  Smooth Invariant Foliations in Infinite Dimensional Spaces , 1991 .

[28]  G. Sell Topological dynamics and ordinary differential equations , 1971 .

[29]  James F. Selgrade,et al.  Isolated invariant sets for flows on vector bundles , 1975 .

[30]  Georg Hetzer,et al.  Uniform Persistence, Coexistence, and Extinction in Almost Periodic/Nonautonomous Competition Diffusion Systems , 2002, SIAM J. Math. Anal..

[31]  J. Mallet-Paret,et al.  The Poincare-Bendixson theorem for monotone cyclic feedback systems , 1990 .

[32]  P. de Mottoni,et al.  Competition systems with periodic coefficients: A geometric approach , 1981 .

[33]  Yi Wang,et al.  Carrying simplices in nonautonomous and random competitive Kolmogorov systems , 2008 .