Focusing the L-Band Spaceborne Bistatic SAR Mission Data Using a Modified RD Algorithm

LuTan-1 [(LT-1), i.e., TwinSAR-L] mission is an innovative spaceborne bistatic synthetic-aperture radar (BiSAR) mission focusing mainly on differential interferometry, which will be launched in 2020. This article introduces some important aspects of the LT-1 mission for the first time, including the formation configuration, imaging mode, application scenarios, and the efficient baselines between the master satellite and the slave satellite. To realize the high accurate topography and deformation measurements, a wide swath BiSAR focusing algorithm with phase reserving ability should be developed. This article proposes a modified bistatic range-Doppler algorithm based on 2-D principle of stationary phase spectrum, which reduces the phase error introduced by the root term expansion and has an excellent focus performance and a good phase reserving ability. Finally, the spaceborne bistatic simulation experiments using orbital parameters and imaging mode of the LT-1 mission, including point targets and scene targets, are utilized to illustrate the validity and accuracy of the proposed algorithm.

[1]  Gerhard Krieger,et al.  TanDEM-X: A radar interferometer with two formation-flying satellites , 2013 .

[2]  Joachim H. G. Ender,et al.  Chirp-Scaling Algorithm for Bistatic SAR Data in the Constant-Offset Configuration , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[3]  G. Krieger,et al.  Close Formation Flight of Passive Receiving Micro-Satellites , 2004 .

[4]  Gerhard Krieger,et al.  Total zero Doppler Steering-a new method for minimizing the Doppler centroid , 2005, IEEE Geoscience and Remote Sensing Letters.

[5]  Betlem Rosich,et al.  Sentinel-1 mission operations concept , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[6]  G. Krieger,et al.  Analysis of system concepts for bi- and multi-static SAR missions , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[7]  J. L. van Genderen,et al.  SAR interferometry : issues, techniques, applications , 1996 .

[8]  Gerhard Krieger,et al.  Interferometric Synthetic Aperture Radar (SAR) Missions Employing Formation Flying , 2010, Proceedings of the IEEE.

[9]  Otmar Loffeld,et al.  A Bistatic Point Target Reference Spectrum for General Bistatic SAR Processing , 2008, IEEE Geoscience and Remote Sensing Letters.

[10]  Ian G. Cumming,et al.  Processing of Azimuth-Invariant Bistatic SAR Data Using the Range Doppler Algorithm , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Heng Zhang,et al.  Spaceborne/Stationary Bistatic SAR Imaging With TerraSAR-X as an Illuminator in Staring-Spotlight Mode , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[12]  G. Krieger,et al.  Spaceborne bi- and multistatic SAR: potential and challenges , 2006 .

[13]  Nicolas Gebert,et al.  Multi-Channel Azimuth Processing for High-Resolution Wide-Swath SAR Imaging , 2009 .

[14]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[15]  Robert Wang,et al.  Extending Loffeld's bistatic formula for the general bistatic SAR configuration , 2010 .

[16]  Malcolm Davidson,et al.  Sentinel-1 ESA's New European Radar Observatory , 2008 .

[17]  Gerhard Krieger,et al.  Errata: Digital Beamforming on Receive: Techniques and Optimization Strategies for High-Resolution Wide-Swath SAR Imaging , 2009 .

[18]  Joachim H. G. Ender,et al.  Focusing Bistatic SAR Data in Airborne/Stationary Configuration , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Marwan Younis,et al.  Tandem-L: A Highly Innovative Bistatic SAR Mission for Global Observation of Dynamic Processes on the Earth's Surface , 2015, IEEE Geoscience and Remote Sensing Magazine.

[20]  Helmut Essen,et al.  Focus FMCW SAR Data Using the Wavenumber Domain Algorithm , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[21]  O. Loffeld,et al.  Challenges of a Bistatic Spaceborne / Airborne SAR Experiment , 2006 .

[22]  Yunkai Deng,et al.  Attitude-Steering Strategy for Squint Spaceborne Synthetic Aperture Radar , 2016, IEEE Geoscience and Remote Sensing Letters.

[23]  Marwan Younis,et al.  ALOS-Next/TanDEM-L: A highly innovative SAR mission for global observation of dynamic processes on the earth's surface , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[24]  Gerhard Krieger,et al.  Digital Beamforming on Receive: Techniques and Optimization Strategies for High-Resolution Wide-Swath SAR Imaging , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[25]  Joachim H. G. Ender,et al.  Processing the Azimuth-Variant Bistatic SAR Data by Using Monostatic Imaging Algorithms Based on Two-Dimensional Principle of Stationary Phase , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Daoxiang An,et al.  Performance Evaluation of Frequency-Domain Algorithms for Chirped Low Frequency UWB SAR Data Processing , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[27]  Franz J. Meyer,et al.  Processing of Bistatic SAR Data From Quasi-Stationary Configurations , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Joachim H. G. Ender,et al.  Results on bistatic synthetic aperture radar , 2004 .

[29]  Otmar Loffeld,et al.  Models and useful relations for bistatic SAR processing , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[30]  Hyung-Sup Jung,et al.  Feasibility of Along-Track Displacement Measurement From Sentinel-1 Interferometric Wide-Swath Mode , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Ian G. Cumming,et al.  Focusing Bistatic SAR Data Using the Nonlinear Chirp Scaling Algorithm , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Jaime Hueso Gonzalez,et al.  TanDEM-X: A satellite formation for high-resolution SAR interferometry , 2007 .