HIERARCHICAL SEMIACTIVE CONTROL OF BASE-ISOLATED STRUCTURES

[1]  José Rodellar,et al.  Robust active control of hysteretic base-isolated structures: Application to the benchmark smart base-isolated building , 2008 .

[2]  Yongmin Yang,et al.  Parameter identification of inelastic structures under dynamic loads , 2002 .

[3]  Woosoon Yim,et al.  Semi-active control of magnetorheological damper system: a Lyapunov design , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[4]  S. Olutunde Oyadiji,et al.  Application of MR damper in structural control using ANFIS method , 2008 .

[5]  Shirley J. Dyke,et al.  Phenomenological Model of a Magnetorheological Damper , 1996 .

[6]  Billie F. Spencer,et al.  A two-step identification technique for semiactive control systems , 2004 .

[7]  Sami F. Masri,et al.  Modeling the oscillatory dynamic behaviour of electrorheological materials in shear , 1992 .

[8]  Armen Der Kiureghian,et al.  Generalized Bouc-Wen model for highly asymmetric hysteresis , 2006 .

[9]  J Huang,et al.  Analysis and design of a cylindrical magneto-rheological fluid brake , 2002 .

[10]  Shirley J. Dyke,et al.  Experimental verification of multiinput seismic control strategies for smart dampers , 2001 .

[11]  S. Olutunde Oyadiji,et al.  Design, modelling and testing of magnetorheological (MR) dampers using analytical flow solutions , 2008 .

[12]  C. Loh,et al.  A three-stage identification approach for hysteretic systems , 1993 .

[13]  Shirley J. Dyke,et al.  Seismic response control using smart dampers , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[14]  Shirley J. Dyke,et al.  Semiactive Control Strategies for MR Dampers: Comparative Study , 2000 .

[15]  Mohammad Noori,et al.  Zero and nonzero mean random vibration analysis of a new general hysteresis model , 1986 .

[16]  Adrian M. Chandler,et al.  Simplified inverse dynamics models for MR fluid dampers , 2006 .

[17]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[18]  Zhao-Dong Xu,et al.  Fuzzy Control Method for Earthquake Mitigation Structures with Magnetorheological Dampers , 2006 .

[19]  Sang-Won Cho,et al.  Modified energy dissipation algorithm for seismic structures using magnetorheological damper , 2007 .

[20]  O. V. Stryk,et al.  Modelling and simulation of electro- and magnetorheological fluid dampers , 2002 .

[21]  M. Yar,et al.  Parameter estimation for hysteretic systems , 1987 .

[22]  Hyung-Jo Jung,et al.  Application of some semi‐active control algorithms to a smart base‐isolated building employing MR dampers , 2006 .

[23]  James M. Kelly,et al.  The role of damping in seismic isolation , 1999 .

[24]  Sergio M. Savaresi,et al.  Identification of semi-physical and black-box non-linear models: the case of MR-dampers for vehicles control , 2005, Autom..

[25]  Bijan Samali,et al.  Semi-active direct control of civil structure seismic responses using magneto-rheological dampers , 2007 .

[26]  Oriol Gomis-Bellmunt,et al.  A limit cycle approach for the parametric identification of hysteretic systems , 2008, Syst. Control. Lett..

[27]  Billie F. Spencer,et al.  “Smart” Base Isolation Strategies Employing Magnetorheological Dampers , 2002 .

[28]  Chih-Chen Chang,et al.  NEURAL NETWORK EMULATION OF INVERSE DYNAMICS FOR A MAGNETORHEOLOGICAL DAMPER , 2002 .

[29]  Y. K. Wen,et al.  Random vibration of hysteretic systems under bi‐directional ground motions , 1986 .

[30]  José Rodellar,et al.  Predictive control of base‐isolated structures , 1992 .

[31]  B Samali,et al.  Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA. , 2007, ISA transactions.

[32]  Manuel de la Sen,et al.  Composite semiactive control of a class of seismically excited structures , 2001, J. Frankl. Inst..

[33]  Jamshid Ghaboussi,et al.  Active Control of Structures Using Neural Networks , 1995 .

[34]  Farzad Naeim,et al.  Design of seismic isolated structures : from theory to practice , 1999 .

[35]  James Conner Poynor Innovative Designs for Magneto-Rheological Dampers , 2001 .

[36]  S. Masri,et al.  Identification of the state equation in complex non-linear systems , 2004 .

[37]  Pinqi Xia,et al.  An inverse model of MR damper using optimal neural network and system identification , 2003 .

[38]  Y. Wen Method for Random Vibration of Hysteretic Systems , 1976 .

[39]  Mohammad Noori,et al.  Random Vibration of Degrading, Pinching Systems , 1985 .

[40]  Chin-Hsiung Loh,et al.  Displacement control of isolated structures with semi-active control devices , 2003 .

[41]  Billie F. Spencer,et al.  Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction , 1996 .

[42]  Khaldoon A. Bani-Hani,et al.  NONLINEAR STRUCTURAL CONTROL USING NEURAL NETWORKS , 1998 .

[43]  M. Kciuk,et al.  Properties and application of magnetorheological fluids , 2006 .

[44]  Nopdanai Ajavakom,et al.  On system identification and response prediction of degrading structures , 2006 .

[45]  T. T. Soong,et al.  Passive and Active Structural Vibration Control in Civil Engineering , 1994, CISM International Centre for Mechanical Sciences.

[46]  Shirley J. Dyke,et al.  Benchmark Control Problems for Seismically Excited Nonlinear Buildings , 2004 .

[47]  Osamu Yoshida,et al.  Seismic Control of a Nonlinear Benchmark Building using Smart Dampers , 2004 .

[48]  F. Ikhouane,et al.  Variation of the hysteresis loop with the Bouc–Wen model parameters , 2007 .

[49]  Yi-Qing Ni,et al.  IDENTIFICATION OF NON-LINEAR HYSTERETIC ISOLATORS FROM PERIODIC VIBRATION TESTS , 1998 .

[50]  F. Ikhouane,et al.  On the Hysteretic Bouc–Wen Model , 2005 .

[51]  Keith Worden,et al.  IDENTIFICATION OF HYSTERETIC SYSTEMS USING THE DIFFERENTIAL EVOLUTION ALGORITHM , 2001 .

[52]  Francesc Pozo,et al.  Nonlinear modeling of hysteretic systems with double hysteretic loops using position and acceleration information , 2009 .

[53]  Wei-Hsin Liao,et al.  Modeling and control of magnetorheological fluid dampers using neural networks , 2005 .

[54]  Kung-Chun Lu,et al.  Decentralized sliding mode control of a building using MR dampers , 2008 .

[55]  Nong Zhang,et al.  Evolutionary Takagi-Sugeno Fuzzy Modelling for MR Damper , 2006, 2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06).

[56]  W. Sun,et al.  Design, Testing and Modeling of a Magnetorheological Damper with Stepped Restoring Torque , 2006 .

[57]  Arturo Rodriguez Tsouroukdissian,et al.  Modeling and Identification of a Small-scale Magnetorheological Damper , 2009 .

[58]  Chih-Chen Chang,et al.  Neural Network Modeling of a Magnetorheological Damper , 1998 .

[59]  Khanh Pham,et al.  Modeling MR-dampers: a nonlinear blackbox approach , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[60]  Mohammad Noori,et al.  Equivalent linearization of generally pinching hysteretic, degrading systems , 1996 .

[61]  Andrew W. Smyth,et al.  On-Line Identification of Hysteretic Systems , 1998 .

[62]  Ying-Shieh Kung,et al.  A comparison of fitness functions for the identification of a piezoelectric hysteretic actuator based on the real-coded genetic algorithm , 2006 .

[63]  Jeong-Hoi Koo,et al.  Using Magneto-Rheological Dampers in Semiactive Tuned Vibration Absorbers to Control Structural Vibrations , 2003 .

[64]  Zdenek P. Bažant,et al.  ENDOCHRONIC INELASTICITY AND INCREMENTAL PLASTICITY , 1978 .

[65]  Erik A. Johnson,et al.  Smart base‐isolated benchmark building. Part I: problem definition , 2006 .

[66]  Raimondo Betti,et al.  On‐line identification and damage detection in non‐linear structural systems using a variable forgetting factor approach , 2004 .

[67]  José Rodellar,et al.  Model identification of a large-scale magnetorheological fluid damper , 2009 .

[68]  Hamid Reza Karimi,et al.  Real‐time hybrid testing of semiactive control strategies for vibration reduction in a structure with MR damper , 2009 .

[69]  Jonathan W. Bender,et al.  Properties and Applications of Commercial Magnetorheological Fluids , 1999 .

[70]  Thomas T. Baber,et al.  Random Vibration Hysteretic, Degrading Systems , 1981 .

[71]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[72]  D. Gamota,et al.  Dynamic mechanical studies of electrorheological materials: Moderate frequencies , 1991 .

[73]  Henri P. Gavin,et al.  Optimal Control of Earthquake Response Using Semiactive Isolation , 2005 .

[74]  Yoshiyuki Suzuki,et al.  Identification of non-linear hysteretic systems with slip , 2004 .

[75]  Georges Bossis,et al.  Yield behavior of magnetorheological suspensions , 2003 .

[76]  Wl L. Qu,et al.  Seismic response control of frame structures using magnetorheological/electrorheological dampers , 2000 .

[77]  Erik A. Johnson,et al.  Smart base‐isolated benchmark building part IV: Phase II sample controllers for nonlinear isolation systems , 2006 .

[78]  A. G. Sreenatha,et al.  Fuzzy logic controller for position control of flexible structures , 2002 .

[79]  Erik A. Johnson,et al.  "SMART" BASE ISOLATION SYSTEMS , 2000 .

[80]  Zhou Xu,et al.  Semi‐active and passive control of the phase I linear base‐isolated benchmark building model , 2006 .

[81]  Hamid Reza Karimi,et al.  Wavelet-Based Parameter Identification of a Nonlinear Magnetorheological Damper , 2009, Int. J. Wavelets Multiresolution Inf. Process..

[82]  B. F. Spencer,et al.  STATE OF THE ART OF STRUCTURAL CONTROL , 2003 .

[83]  R. Sedaghati,et al.  Modelling the hysteresis phenomenon of magnetorheological dampers , 2004 .

[84]  Richard W. Longman,et al.  On‐line identification of non‐linear hysteretic structural systems using a variable trace approach , 2001 .

[85]  Bijan Samali,et al.  Mitigation of seismic responses on building structures using MR dampers with Lyapunov‐based control , 2008 .

[86]  Yoshiyuki Suzuki,et al.  Identification of hysteretic systems with slip using bootstrap filter , 2004 .

[87]  Jeen‐Shang Lin Extraction of Dynamic Soil Properties Using Extended Kalman Filter , 1994 .

[88]  Erik A. Johnson,et al.  "Smart" base isolation systems , 2000 .

[89]  Damon G. Reigles,et al.  Supervisory fuzzy control of a base‐isolated benchmark building utilizing a neuro‐fuzzy model of controllable fluid viscous dampers , 2006 .

[90]  Hyung-Jo Jung,et al.  State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications , 2004 .

[91]  Paul N. Roschke,et al.  Neuro-fuzzy control of structures using magnetorheological dampers , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[92]  Fook Fah Yap,et al.  Testing and steady state modeling of a linear MR damper under sinusoidal loading , 2000 .