Methodological Considerations on Regional Sustainability Assessment Based on Multicriteria and Sensitivity Analysis

Munda G. and Saisana M. Methodological considerations on regional sustainability assessment based on multicriteria and sensitivity analysis, Regional Studies. This paper proposes the use of a non-compensatory multicriteria approach combined with sensitivity analysis for constructing composite indicators of sustainability. An illustrative example on Spanish and selected Mediterranean regions is used. The sensitivity analysis shows that excluding an indicator from a twenty-nine-indicator data set (which represents, in principle, a small structural change) has a much lower impact on the regional ranking if that is based on a non-compensatory multicriteria approach than on the classical linear aggregation, for example the weighted arithmetic average. An alternative approach that employs endogenous weighting (region-specific weights) and is based on data envelopment analysis is discussed. Munda G. et Saisana M. Des considérations méthodologiques basées sur une analyse à critères multiples et de sensibilité quant à l'évaluation de la notion de la région durable, Regional Studies. Cet article propose l'emploi d'une façon à critères multiples non-compensatoire conjointement avec une analyse de sensibilité afin de construire des indicateurs composites de la notion de durabilité. A titre d'illustration, on se sert des régions espagnoles et de certaines régions méditerranéennes. L'analyse de sensibilité laisse voir que ne pas retenir un indicateur dans un ensemble de données de vingt-neuf indicateurs (ce qui représente, en principe, une modification structurelle négligeable) a un impact nettement plus faible sur le rang régional si celui-ci est basé sur une façon à critères multiples non-compensatoire que sur une agrégation classique linéaire, par exemple la moyenne arithmétique pondérée. Une autre façon qui emploie une pondération endogène (des pondérations spécifiques à une région) et basée sur une analyse de l'enveloppement des données. Durabilité régionale Indicateurs composites Evaluation à critères multiples Analyse de sensibilité Munda G. und Saisana M. Methodologische Aspekte bei der Bewertung der regionalen Nachhaltigkeit mit Hilfe einer multikriteriellen und Empfindlichkeitsanalyse, Regional Studies. In diesem Beitrag wird für die Entwicklung von kombinierten Nachhaltigkeitsindikatoren ein nicht kompensatorischer multikriterieller Ansatz in Kombination mit einer Empfindlichkeitsanalyse vorgeschlagen. Als Beispiel zur Verdeutlichung dienen spanische und ausgewählte Mittelmeerregionen. Wie aus der Empfindlichkeitsanalyse hervorgeht, wirkt sich der Ausschluss eines Indikators aus einem Datensatz mit 29 Indikatoren (was im Prinzip einer geringfügigen strukturellen Veränderung gleichkommt) weitaus weniger stark auf den regionalen Rang aus, wenn die Rangordnung statt auf der klassischen linearen Aggregation (z. B. dem gewichteten arithmetischen Durchschnitt) auf einem nicht kompensatorischen multikriteriellen Ansatz aufbaut. Es wird ein alternativer Ansatz erörtert, bei dem eine endogene Gewichtung (mit regionalspezifischen Gewichten) zum Einsatz kommt und der auf einer Dateneinhüllanalyse basiert. Regionale Nachhaltigkeit Kombinierte Indikatoren Multikriterielle Bewertung Empfindlichkeitsanalyse Munda G. y Saisana M. Consideraciones metodológicas sobre la valoración de la sostenibilidad regional basada en diferentes criterios y un análisis de sensibilidad, Regional Studies. En este artículo proponemos el uso de un planteamiento de varios criterios no compensatorios que combinamos con un análisis de sensibilidad para construir indicadores compuestos de sostenibilidad. Utilizamos un ejemplo ilustrativo con regiones españolas y regiones mediterráneas seleccionadas. El análisis de sensibilidad muestra que si excluimos un indicador de un grupo de datos formado por veintinueve indicadores (lo que, en principio, representa un pequeño cambio estructural) tiene un impacto mucho menor en la clasificación regional si ésta se basa en un planteamiento de varios criterios no compensatorios en vez de la agregación lineal clásica (por ejemplo el promedio aritmético ponderado). Aquí analizamos un enfoque alternativo que emplea la ponderación endógena (ponderaciones específicas a las regiones) y está basado en un análisis envolvente de datos. Sostenibilidad regional Indicadores compuestos Evaluación de muchos criterios Análisis de sensibilidad

[1]  G. Munda Social Multi-Criteria Evaluation for a Sustainable Economy , 2007 .

[2]  C. S. Holling,et al.  Economic growth, carrying capacity, and the environment , 1995, Environment and Development Economics.

[3]  Joseph A. Tainter,et al.  Supply-Side Sustainability , 2003 .

[4]  Sylvie Faucheux,et al.  Valuation for sustainable development: methods and policy indicators. , 1998 .

[5]  David Pearce,et al.  Measuring sustainable development: progress on indicators , 1996, Environment and Development Economics.

[6]  P. Nijkamp,et al.  Decision support models for regional sustainable development : an application of geographic information systems and evaluation models to the Greek Sporades Islands , 1993 .

[7]  Willem Moesen,et al.  Towards a synthetic indicator of macroeconomic performance: Unequal weighting when limited information is available , 1991 .

[8]  Laurens Cherchye,et al.  Creating composite indicators with DEA and robustness analysis: the case of the Technology Achievement Index , 2006, J. Oper. Res. Soc..

[9]  G. Munda Social multi-criteria evaluation for urban sustainability policies , 2006 .

[10]  M. Giampietro Using hierarchy theory to explore the concept of sustainable development , 1994 .

[11]  Harvey M. Wagner,et al.  Global Sensitivity Analysis , 1995, Oper. Res..

[12]  Giuseppe Munda,et al.  Noncompensatory/nonlinear composite indicators for ranking countries: a defensible setting , 2009 .

[13]  Giuseppe Munda,et al.  Multiple Criteria Decision Analysis and Sustainable Development , 2005 .

[14]  Denis Bouyssou,et al.  Noncompensatory and generalized noncompensatory preference structures , 1986 .

[15]  K. Arrow,et al.  Social Choice and Multicriterion Decision-Making , 1986 .

[16]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice , 2002 .

[17]  W. Heijman Steady-State Economics , 1998 .

[18]  Mario Paruggia,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2006 .

[19]  Denis Bouyssou,et al.  Some remarks on the notion of compensation in MCDM , 1986 .

[20]  Nicolas de Condorcet Essai Sur L'Application de L'Analyse a la Probabilite Des Decisions Rendues a la Pluralite Des Voix , 2009 .

[21]  Tommaso Luzzati,et al.  An exercise in composite indicators construction: Assessing the sustainability of Italian regions , 2011 .

[22]  Stefano Tarantola,et al.  Uncertainty and sensitivity analysis techniques as tools for the quality assessment of composite indicators , 2005 .

[23]  Anne Wallis,et al.  Measuring regional sustainability – lessons to be learned , 2007 .

[24]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[25]  Emanuele Felice,et al.  Neither dashboard nor 'mashup' indices: an empirical wealth approach as a pathway to a comprehensive measure of development , 2012 .

[26]  Abraham Charnes,et al.  Preface to topics in data envelopment analysis , 1984, Ann. Oper. Res..

[27]  John E. Beasley,et al.  Restricting Weight Flexibility in Data Envelopment Analysis , 1990 .

[28]  M. Schlesinger,et al.  The economic geography of the impacts of climate change , 2002 .

[29]  Fulvia Pennoni,et al.  Comparative Analysis of Alcohol Control Policies in 30 Countries , 2007, PLoS medicine.

[30]  A. Barnes A method for constructing an index of sustainable intensification within the developed country context , 2012 .

[31]  H. Young Condorcet's Theory of Voting , 1988, American Political Science Review.

[32]  Giuseppe Munda,et al.  Social multi-criteria evaluation: Methodological foundations and operational consequences , 2004, Eur. J. Oper. Res..

[33]  A. U.S.,et al.  Measuring the efficiency of decision making units , 2003 .

[34]  F. Plassmann,et al.  Preferences, Technology, and the Environment: Understanding the Environmental Kuznets Curve Hypothesis , 2006 .

[35]  S. Tarantola,et al.  State-of-the-art Report on Current Methodologies and Practices for Composite Indicator Development , 2002 .

[36]  F. Vega-Redondo Complex Social Networks: Econometric Society Monographs , 2007 .

[37]  Edward B. Barbier,et al.  The conditions for achieving environmentally sustainable development , 1990 .

[38]  L. Cherchye,et al.  Legitimately Diverse, Yet Comparable: On Synthesizing Social Inclusion Performance in the EU , 2004 .

[39]  Saisana Michaela,et al.  2007 Composite Learning Index: Robustness Issues and Critical Assessment , 2008 .

[40]  David Gibbs,et al.  Prospects for an Environmental Economic Geography: Linking Ecological Modernization and Regulationist Approaches , 2006 .

[41]  G. Munda Multicriteria Evaluation in a Fuzzy Environment: Theory and Applications in Ecological Economics , 1995 .

[42]  R. Deacon,et al.  Does the Environmental Kuznets Curve Describe How Individual Countries Behave? , 2004, Land Economics.

[43]  Theodor J. Stewart,et al.  Multiple Criteria Decision Analysis , 2001 .

[44]  Ruut Veenhoven,et al.  Happy life-expectancy , 1996 .

[45]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[46]  Giuseppe Munda,et al.  Multicriteria Evaluation in a Fuzzy Environment , 1995 .

[47]  I. Musu,et al.  National accounts and the environment , 1996 .

[48]  Nardo Michela,et al.  Constructing Consistent Composite Indicators: the Issue of Weights , 2005 .