Consistent Binocular Depth and Scene Flow with Chained Temporal Profiles

We propose a depth and image scene flow estimation method taking the input of a binocular video. The key component is motion-depth temporal consistency preservation, making computation in long sequences reliable. We tackle a number of fundamental technical issues, including connection establishment between motion and depth, structure consistency preservation in multiple frames, and long-range temporal constraint employment for error correction. We address all of them in a unified depth and scene flow estimation framework. Our main contributions include development of motion trajectories, which robustly link frame correspondences in a voting manner, rejection of depth/motion outliers through temporal robust regression, novel edge occurrence map estimation, and introduction of anisotropic smoothing priors for proper regularization.

[1]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[2]  Ralph Arnote,et al.  Hong Kong (China) , 1996, OECD/G20 Base Erosion and Profit Shifting Project.

[3]  Jean Ponce,et al.  Accurate, Dense, and Robust Multiview Stereopsis , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Hui Cheng,et al.  Bilateral Filtering-Based Optical Flow Estimation with Occlusion Detection , 2006, ECCV.

[5]  C. Bregler,et al.  Large displacement optical flow , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Yael Moses,et al.  Multi-view Scene Flow Estimation: A View Centered Variational Approach , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Georgios Tziritas,et al.  Joint disparity and motion field estimation in stereoscopic image sequences , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[8]  Joachim Weickert,et al.  Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods , 2005, International Journal of Computer Vision.

[9]  Kwanghoon Sohn,et al.  Edge-preserving Simultaneous Joint Motion-Disparity Estimation , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[10]  Uwe Franke,et al.  Dense, Robust, and Accurate Motion Field Estimation from Stereo Image Sequences in Real-Time , 2010, ECCV.

[11]  Li Zhang,et al.  Spacetime stereo: shape recovery for dynamic scenes , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[12]  Radu Horaud,et al.  Scene flow estimation by growing correspondence seeds , 2011, CVPR 2011.

[13]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[14]  Frederic Devernay,et al.  A Variational Method for Scene Flow Estimation from Stereo Sequences , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[15]  Joachim Weickert,et al.  Joint Estimation of Motion, Structure and Geometry from Stereo Sequences , 2010, ECCV.

[16]  Hujun Bao,et al.  Consistent Depth Maps Recovery from a Video Sequence , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Kurt Keutzer,et al.  Dense Point Trajectories by GPU-Accelerated Large Displacement Optical Flow , 2010, ECCV.

[18]  T. Vaudrey,et al.  Evaluation of moving object segmentation comparing 6D-vision and monocular motion constraints , 2008, 2008 23rd International Conference Image and Vision Computing New Zealand.

[19]  In-So Kweon,et al.  Adaptive Support-Weight Approach for Correspondence Search , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Yasuyuki Matsushita,et al.  Motion detail preserving optical flow estimation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Ye Zhang,et al.  On 3D scene flow and structure estimation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[22]  Zhengyou Zhang,et al.  Estimation of Displacements from Two 3-D Frames Obtained From Stereo , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[24]  Rachid Deriche,et al.  Symmetrical Dense Optical Flow Estimation with Occlusions Detection , 2002, International Journal of Computer Vision.

[25]  Hans-Peter Seidel,et al.  Complementary Optic Flow , 2009, EMMCVPR.

[26]  Richard Bowden,et al.  Kinecting the dots: Particle based scene flow from depth sensors , 2011, 2011 International Conference on Computer Vision.

[27]  Takeo Kanade,et al.  Three-dimensional scene flow , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Neil A. Dodgson,et al.  Real-Time Spatiotemporal Stereo Matching Using the Dual-Cross-Bilateral Grid , 2010, ECCV.

[29]  T. Vaudrey,et al.  Differences between stereo and motion behaviour on synthetic and real-world stereo sequences , 2008, 2008 23rd International Conference Image and Vision Computing New Zealand.

[30]  Michael J. Black Recursive Non-Linear Estimation of Discontinuous Flow Fields , 1994, ECCV.

[31]  Daniel Cremers,et al.  Efficient Dense Scene Flow from Sparse or Dense Stereo Data , 2008, ECCV.

[32]  Seth J. Teller,et al.  Particle Video: Long-Range Motion Estimation Using Point Trajectories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[33]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[34]  Daniel Cremers,et al.  Stereoscopic Scene Flow Computation for 3D Motion Understanding , 2011, International Journal of Computer Vision.

[35]  Joachim Weickert,et al.  Towards ultimate motion estimation: combining highest accuracy with real-time performance , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[36]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Michal Irani,et al.  Multi-Frame Correspondence Estimation Using Subspace Constraints , 2002, International Journal of Computer Vision.

[38]  Konrad Schindler,et al.  3D scene flow estimation with a rigid motion prior , 2011, 2011 International Conference on Computer Vision.

[39]  Li Xu,et al.  A Segmentation Based Variational Model for Accurate Optical Flow Estimation , 2008, ECCV.

[40]  Michael J. Black,et al.  Learning Optical Flow , 2008, ECCV.

[41]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).