Comparison of multiobjective gradient-based methods for structural shape optimization

This work aims at formulating a shape optimization problem within a multiobjective optimization framework and approximating it by means of the so-called Multiple-Gradient Descent Algorithm (MGDA), a gradient-based strategy that extends classical Steepest-Descent Method to the case of the simultaneous optimization of several criteria. We describe several variants of MGDA and we apply them to a shape optimization problem in linear elasticity using a numerical solver based on IsoGeometric Analysis (IGA). In particular, we study a multiobjective gradient-based method that approximates the gradients of the functionals by means of the Finite Difference Method; kriging-assisted MGDA that couples a statistical model to predict the values of the objective functionals rather than actually computing them; a variant of MGDA based on the analytical gradients of the functionals extracted from the NURBS -based parametrization of the IGA solver. Some numerical simulations for a test case in computational mechanics are carried on to validate the methods and a comparative analysis of the results is presented.

[1]  Régis Duvigneau,et al.  Kriging‐based optimization applied to flow control , 2012 .

[2]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[3]  Cornelius O. Horgan,et al.  Korn's Inequalities and Their Applications in Continuum Mechanics , 1995, SIAM Rev..

[4]  B. Simeon,et al.  Shape Gradient Computation in Isogeometric Analysis for Linear Elasticity , 2012 .

[5]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[6]  Gianluigi Rozza,et al.  Reduced Basis Approximation for Shape Optimization in Thermal Flows with a Parametrized Polynomial Geometric Map , 2010 .

[7]  Jean-Antoine Désidéri,et al.  Application of Metamodel-Assisted Multiple-Gradient Descent Algorithm (MGDA) to Air-Cooling Duct Shape Optimization , 2012 .

[8]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[9]  J. Cea Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût , 1986 .

[10]  G. Allaire,et al.  Shape and topology optimization of the robust compliance via the level set method , 2008 .

[11]  O. Pironneau Optimal Shape Design for Elliptic Systems , 1983 .

[12]  J. Désidéri Multiple-gradient descent algorithm (MGDA) for multiobjective optimization , 2012 .

[13]  Raino A. E. Mäkinen,et al.  Introduction to shape optimization - theory, approximation, and computation , 2003, Advances in design and control.

[14]  Antonin Chambolle,et al.  A Density Result in Two-Dimensional Linearized Elasticity, and Applications , 2003 .

[15]  Grégoire Allaire Conception optimale de structures , 2007 .

[16]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[17]  M. Delfour,et al.  Shapes and Geometries: Analysis, Differential Calculus, and Optimization , 1987 .

[18]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[19]  Jean-Antoine Désidéri Cooperation and competition in multidisciplinary optimization , 2012, Comput. Optim. Appl..

[20]  F. Murat,et al.  Sur le controle par un domaine géométrique , 1976 .

[21]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.