Counting truth assignments of formulas of bounded tree-width or clique-width

We study algorithms for @?SAT and its generalized version @?GENSAT, the problem of computing the number of satisfying assignments of a set of propositional clauses @S. For this purpose we consider the clauses given by their incidence graph, a signed bipartite graph SI(@S), and its derived graphs I(@S) and P(@S). It is well known, that, given a graph of tree-width k, a k-tree decomposition can be found in polynomial time. Very recently Oum and Seymour have shown that, given a graph of clique-width k, a (2^3^k^+^2-1)-parse tree witnessing clique-width can be found in polynomial time. In this paper we present an algorithm for @?GENSAT for formulas of bounded tree-width k which runs in time 4^k(n+n^2.log"2(n)), where n is the size of the input. The main ingredient of the algorithm is a splitting formula for the number of satisfying assignments for a set of clauses @S where the incidence graph I(@S) is a union of two graphs G"1 and G"2 with a shared induced subgraph H of size at most k. We also present analogue improvements for algorithms for formulas of bounded clique-width which are given together with their derivation. This considerably improves results for @?SAT, and hence also for SAT, previously obtained by Courcelle et al. [On the fixed parameter complexity of graph enumeration problems definable in monadic second order logic, Discrete Appl. Math. 108 (1-2) (2001) 23-52].

[1]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[2]  Johann A. Makowsky,et al.  Farrell polynomials on graphs of bounded tree width , 2003, Adv. Appl. Math..

[3]  Eyal Amir,et al.  Approximation Algorithms for Treewidth , 2010, Algorithmica.

[4]  Michael Alekhnovich,et al.  Satisfiability, Branch-Width and Tseitin tautologies , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[5]  Bruno Courcelle,et al.  The monadic second-order logic of graphs XIV: uniformly sparse graphs and edge set quantifications , 2003, Theor. Comput. Sci..

[6]  Bruno Courcelle,et al.  Recognizability, hypergraph operations, and logical types , 2006, Inf. Comput..

[7]  B. Courcellea,et al.  On the xed parameter complexity of graph enumeration problems de nable in monadic second-order logic , 2000 .

[8]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[9]  Seiya Negami,et al.  Polynomial invariants of graphs , 1987 .

[10]  Alon Itai,et al.  Unification as a Complexity Measure for Logic Programming , 1987, J. Log. Program..

[11]  Hans L. Bodlaender,et al.  Treewidth: Algorithmic Techniques and Results , 1997, MFCS.

[12]  Douglas B. Lenat,et al.  CYC: a large-scale investment in knowledge infrastructure , 1995, CACM.

[13]  Lorenzo Traldi,et al.  On the colored Tutte polynomial of a graph of bounded treewidth , 2006, Discret. Appl. Math..

[14]  Stefan Szeider,et al.  On Fixed-Parameter Tractable Parameterizations of SAT , 2003, SAT.

[15]  Udi Rotics,et al.  Polynomial Time Recognition of Clique-Width \le \leq 3 Graphs (Extended Abstract) , 2000, Latin American Symposium on Theoretical Informatics.

[16]  Johann A. Makowsky,et al.  Colored Tutte polynomials and Kaufman brackets for graphs of bounded tree width , 2001, SODA '01.

[17]  Nadia Creignou,et al.  Complexity of Generalized Satisfiability Counting Problems , 1996, Inf. Comput..

[18]  B. COURCELLE,et al.  Fusion in relational structures and the verification of monadic second-order properties , 2002, Mathematical Structures in Computer Science.

[19]  Sheila A. McIlraith,et al.  Theorem Proving with Structured Theories , 2001, IJCAI.

[20]  Rina Dechter,et al.  Tree Clustering for Constraint Networks , 1989, Artif. Intell..

[21]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[22]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.

[23]  Joost Engelfriet,et al.  Logical Description of Contex-Free Graph Languages , 1997, J. Comput. Syst. Sci..

[24]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[25]  J. McCarthy,et al.  Dividing and conquering logic , 2001 .

[26]  Albert Atserias,et al.  A combinatorial characterization of resolution width , 2008, J. Comput. Syst. Sci..

[27]  Udi Rotics,et al.  On the Clique-Width of Some Perfect Graph Classes , 2000, Int. J. Found. Comput. Sci..

[28]  Johann A. Makowsky,et al.  NCE Graph Grammars and Clique-Width , 2003, WG.

[29]  Dong Wang,et al.  Using cutwidth to improve symbolic simulation and Boolean satisfiability , 2001, Sixth IEEE International High-Level Design Validation and Test Workshop.

[30]  Joost Engelfriet,et al.  Regular Description of Context-Free Graph Languages , 1996, J. Comput. Syst. Sci..

[31]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[32]  Johann A. Makowsky,et al.  On the Clique-Width of Graphs with Few P4's , 1999, Int. J. Found. Comput. Sci..

[33]  Peter L. Hammer,et al.  Discrete Applied Mathematics , 1993 .

[34]  Eyal Amir,et al.  (De)Composition of Situation Calculus Theories , 2000, AAAI/IAAI.

[35]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[36]  Johann A. Makowsky,et al.  Algorithmic uses of the Feferman-Vaught Theorem , 2004, Ann. Pure Appl. Log..

[37]  Zvi Galil,et al.  On the Complexity of Regular Resolution and the Davis-Putnam Procedure , 1977, Theor. Comput. Sci..

[38]  Bruno Courcelle,et al.  On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic , 2001, Discret. Appl. Math..

[39]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[40]  Bruno Courcelle,et al.  Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1993, Theor. Comput. Sci..

[41]  Eyal Amir,et al.  Efficient Approximation for Triangulation of Minimum Treewidth , 2001, UAI.

[42]  E. S.D.NOBL Evaluating the Tutte Polynomial for Graphs of Bounded TreeWidth , 2022 .

[43]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[44]  James G. Oxley,et al.  Tutte polynomials computable in polynomial time , 1992, Discret. Math..

[45]  Artur Andrzejak,et al.  Splitting Formulas for Tutte Polynomials , 1997, J. Comb. Theory, Ser. B.

[46]  Bruno Courcelle,et al.  A Logical Characterization of the Sets of Hypergraphs Defined by Hyperedge Replacement Grammars , 1995, Math. Syst. Theory.

[47]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs VII: Graphs as Relational Structures , 1992, Theor. Comput. Sci..

[48]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[49]  Steven D. Noble,et al.  Evaluating the Tutte Polynomial for Graphs of Bounded Tree-Width , 1998, Combinatorics, Probability and Computing.

[50]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[51]  Georg Gottlob,et al.  Hypergraphs in Model Checking: Acyclicity and Hypertree-Width versus Clique-Width , 2004, SIAM J. Comput..

[52]  Paul R. Cohen,et al.  The DARPA High-Performance Knowledge Bases Project , 1998, AI Mag..

[53]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[54]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[55]  Johann A. Makowsky,et al.  Tree-width and the monadic quantifier hierarchy , 2003, Theor. Comput. Sci..

[56]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[57]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[58]  Martin Grohe,et al.  The complexity of first-order and monadic second-order logic revisited , 2004, Ann. Pure Appl. Log..

[59]  B. Reed,et al.  Polynomial Time Recognition of Clique-Width ≤ 3 Graphs , 2000 .

[60]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[61]  Mikkel Thorup,et al.  All Structured Programs have Small Tree-Width and Good Register Allocation , 1998, Inf. Comput..

[62]  Per Bjesse,et al.  Guiding SAT Diagnosis with Tree Decompositions , 2003, SAT.

[63]  Bruno Courcelle,et al.  The monadic second-order logic of graphs XVI : Canonical graph decompositions , 2005, Log. Methods Comput. Sci..

[64]  Sheila A. McIlraith,et al.  Partition-based logical reasoning for first-order and propositional theories , 2005, Artif. Intell..

[65]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..