Line planning on tree networks with applications to the Quito Trolebús system

We discuss an optimization model for the line planning problem in public transport in order to minimize operation costs while guaranteeing a certain level of quality of service, in terms of available transport capacity. We analyze the computational complexity of this problem for tree network topologies as well as several categories of line operations that are important for the Quito Trolebus system. In practice, these instances can be solved quite well, and significant optimization potentials can be demonstrated.

[1]  Leo Kroon,et al.  On solving multi-type line planning problems , 2002 .

[2]  Michael R. Bussieck,et al.  A fast algorithm for near cost optimal line plans , 2004, Math. Methods Oper. Res..

[3]  Michael R. Bussieck,et al.  A fast algorithmfor near cost optim al line plans , 2004 .

[4]  Matthew G. Karlaftis,et al.  Transit Route Network Design Problem: Review , 2009 .

[5]  Tobias Achterberg,et al.  Constraint integer programming , 2007 .

[6]  Michael R. Bussieck,et al.  Discrete optimization in public rail transport , 1997, Math. Program..

[7]  Informationstechnik Berlin,et al.  Models for Line Planning in Public Transport , 2004 .

[9]  Jean-Marc Rousseau,et al.  Chapter 5 Models in urban and air transportation , 1994, Operations research and the public sector.

[10]  Anita Schöbel,et al.  Line Planning with Minimal Traveling Time , 2005, ATMOS.

[11]  Karl Nachtigall,et al.  Simultaneous Network Line Planning and Traffic Assignment , 2008, ATMOS.

[12]  Nico M. van Dijk,et al.  Cost optimal allocation of rail passenger lines , 1998, Eur. J. Oper. Res..

[13]  A. Bouma,et al.  Linienplanung und Simulation für öffentliche Verkehrswege in Praxis und Theorie , 1994 .

[14]  Informationstechnik Berlin,et al.  Line Planning on Paths and Tree Networks with Applications to the Quito Trolebús System , 2008 .

[15]  Mark Hickman,et al.  Computer-aided Systems in Public Transport , 2008 .

[16]  Roland Wunderling,et al.  Paralleler und objektorientierter Simplex-Algorithmus , 1996 .

[17]  Michael R. Bussieck,et al.  Optimal Lines in Public Rail Transport , 1998 .

[18]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[19]  Martin Grötschel,et al.  A Column-Generation Approach to Line Planning in Public Transport , 2007, Transp. Sci..

[20]  P. Kreuzer,et al.  Optimal lines for railway systems , 1997 .

[21]  Marc E. Pfetsch,et al.  Models for fare planning in public transport , 2012, Discret. Appl. Math..

[22]  Leo G. Kroon,et al.  A Branch-and-Cut Approach for Solving Railway Line-Planning Problems , 2004, Transp. Sci..