Construction of Structured Low-Density Parity-Check Codes: Combinatorial and Algebraic Approaches

Codes: Combinatorial and Algebraic Approaches BY LEI CHEN B.S.E.E. (Beijing University of Aeronautics and Astronautics, Beijing, China) 1995 M.S.E.E. (Beijing University of Aeronautics and Astronautics, Beijing, China) 1998 DISSERTATION Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ELECTRICAL AND COMPUTER ENGINEERING in the OFFICE OF GRADUATE STUDIES of the UNIVERSITY OF CALIFORNIA DAVIS

[1]  Shu Lin,et al.  Near-Shannon-limit quasi-cyclic low-density parity-check codes , 2004, IEEE Trans. Commun..

[2]  Suquan Ding Iterative Decoding of L-step Majority-Logic Decodable Codes Based on Belief Propagation , 2007, International Conference on Wireless Communications, Networking and Mobile Computing.

[3]  Shu Lin,et al.  Low density parity check codes: construction based on finite geometries , 2000, Globecom '00 - IEEE. Global Telecommunications Conference. Conference Record (Cat. No.00CH37137).

[4]  Shu Lin,et al.  Codes on finite geometries , 2005, IEEE Transactions on Information Theory.

[5]  James L. Massey,et al.  Review of 'Error-Correcting Codes, 2nd edn.' (Peterson, W. W., and Weldon, E. J., Jr.; 1972) , 1973, IEEE Trans. Inf. Theory.

[6]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[7]  Shu Lin,et al.  Low-density parity-check codes based on finite geometries: A rediscovery and new results , 2001, IEEE Trans. Inf. Theory.

[8]  Li Ping,et al.  Low density parity check codes with semi-random parity check matrix , 1999 .

[9]  M. Fossorier,et al.  Quasicyclic codes from a finite affine plane , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[10]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[11]  Marc P. C. Fossorier,et al.  Quasi-Cyclic Codes from a Finite Affine Plane , 2006, Des. Codes Cryptogr..

[12]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[13]  William E. Ryan,et al.  Design of efficiently encodable moderate-length high-rate irregular LDPC codes , 2004, IEEE Transactions on Communications.

[14]  I. N. Imam,et al.  An algorithm using the Schur complement in inverting large matrices , 1989, Proceedings. IEEE Energy and Information Technologies in the Southeast'.

[15]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[16]  Sarah J. Johnson,et al.  A family of irregular LDPC codes with low encoding complexity , 2003, IEEE Communications Letters.

[17]  P. A. Wintz,et al.  Error Free Coding , 1973 .

[18]  Nenad Miladinovic,et al.  Systematic recursive construction of LDPC codes , 2004, IEEE Communications Letters.

[19]  R. M. Tanner Spectral graphs for quasi-cyclic LDPC codes , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[20]  Irving S. Reed,et al.  A class of multiple-error-correcting codes and the decoding scheme , 1954, Trans. IRE Prof. Group Inf. Theory.

[21]  R. M. Tanner,et al.  A Class of Group-Structured LDPC Codes , 2001 .

[22]  H. Mattson,et al.  The mathematical theory of coding , 1976, Proceedings of the IEEE.

[23]  Bahram Honary,et al.  On construction of low density parity check codes , 2004 .

[24]  Pascal O. Vontobel,et al.  Construction of codes based on finite generalized quadrangles for iterative decoding , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[25]  G. M.,et al.  An Introduction to the Theory of Groups of Finite Order , 1908, Nature.

[26]  Yu Kou,et al.  On a class of finite geometry low density parity check codes , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[27]  Evangelos Eleftheriou,et al.  Progressive edge-growth Tanner graphs , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[28]  Sarah J. Johnson,et al.  Regular low-density parity-check codes from combinatorial designs , 2001, Proceedings 2001 IEEE Information Theory Workshop (Cat. No.01EX494).

[29]  Henry B. Mann,et al.  Analysis and design of experiments. , 1950 .

[30]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[31]  Shu Lin,et al.  Iterative decoding of one-step majority logic deductible codes based on belief propagation , 2000, IEEE Trans. Commun..

[32]  Khaled A. S. Abdel-Ghaffar,et al.  On algebraic construction of Gallager and circulant low-density parity-check codes , 2004, IEEE Transactions on Information Theory.

[33]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[34]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[35]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[36]  Oscar Moreno,et al.  Construction of low density parity check codes from optical orthogonal codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[37]  Hideki Imai,et al.  Irregular low-density parity-check code design based on integer lattices , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[38]  J. Moura,et al.  Structured low-density parity-check codes , 2004, IEEE Signal Processing Magazine.

[39]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[40]  Khaled A. S. Abdel-Ghaffar,et al.  A trellis-based method for removing cycles from bipartite graphs and construction of low density parity check codes , 2004, IEEE Communications Letters.

[41]  Marco Chiani,et al.  Design and performance evaluation of some high-rate irregular low-density parity-check codes , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[42]  Shu Lin,et al.  Near-Shannon-limit quasi-cyclic low-density parity-check codes , 2003, IEEE Transactions on Communications.

[43]  Bahram Honary,et al.  Construction of low-density parity-check codes based on balanced incomplete block designs , 2004, IEEE Transactions on Information Theory.

[44]  Sarah J. Johnson,et al.  Codes for iterative decoding from partial geometries , 2004, IEEE Transactions on Communications.

[45]  Shu Lin,et al.  A combinatoric superposition method for constructing low density parity check codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[46]  Shu Lin,et al.  Construction of low-density parity-check codes by superposition , 2005, IEEE Transactions on Communications.

[47]  Bahram Honary,et al.  Construction of low density parity check codes: a combinatoric design approach , 2002, Proceedings IEEE International Symposium on Information Theory,.

[48]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[49]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[50]  Ian F. Blake,et al.  The mathematical theory of coding , 1975 .

[51]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[52]  P. Vontobel,et al.  Constructions of LDPC Codes using Ramanujan Graphs and Ideas from Margulis , 2000 .

[53]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[54]  Bane V. Vasic High-rate low-density parity check codes based on anti-Pasch affine geometries , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[55]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[56]  Khaled A. S. Abdel-Ghaffar,et al.  Graph-theoretic construction of low-density parity-check codes , 2003, IEEE Communications Letters.

[57]  Bane V. Vasic,et al.  Combinatorial constructions of low-density parity-check codes for iterative decoding , 2002, IEEE Transactions on Information Theory.

[58]  Daniel A. Spielman,et al.  Expander codes , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[59]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[60]  F. Lemmermeyer Error-correcting Codes , 2005 .

[61]  Daniel J. Costello,et al.  A construction for irregular low density parity check convolutional codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[62]  Hans-Andrea Loeliger,et al.  Codes and iterative decoding on general graphs , 1995, Eur. Trans. Telecommun..

[63]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[64]  Yu Kou,et al.  On circulant low density parity check codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[65]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[66]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[67]  Bane Vasic,et al.  LDPC codes based on mutually orthogonal latin rectangles and their application in perpendicular magnetic recording , 2002 .

[68]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[69]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[70]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[71]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.