A QUEUEING ANALYSIS OF PRIORITY-BASED SCHEDULING RULES FOR A SINGLE-STAGE MANUFACTURING SYSTEM WITH REPAIR
暂无分享,去创建一个
[1] L. Takács. A single-server queue with feedback , 1963 .
[2] N. K. Jaiswal,et al. Priority queues , 1968 .
[3] Shimon Y. Nof,et al. Analysis of recirculation in robotic systems using feedback models , 1987 .
[4] G. Klimov. Time-Sharing Service Systems. I , 1975 .
[5] Dong-Wan Tcha,et al. Optimal Control of Single-Server Queuing Networks and Multi-Class M/G/1 Queues with Feedback , 1977, Oper. Res..
[6] B. Simon,et al. The M/G/1 Queue with Instantaneous, Bernoulli Feedback. , 1980 .
[7] P. Whittle. Arm-Acquiring Bandits , 1981 .
[8] Shimon Y. Nof,et al. Unitary Manufacturing Cell Design with Random Product Feedback Flow , 1985 .
[9] William L. Maxwell,et al. Theory of scheduling , 1967 .
[10] Ronald W. Wolff,et al. Poisson Arrivals See Time Averages , 1982, Oper. Res..
[11] Jean Walrand,et al. Extensions of the multiarmed bandit problem: The discounted case , 1985 .
[12] Isaac Meilijson. Multiple feedback at a single server station , 1975 .
[13] Linus Schrage,et al. The Queue M/G/1 With Feedback to Lower Priority Queues , 1967 .
[14] Burton Simon. Priority Queues with Feedback , 1984, JACM.
[15] Alan Cobham,et al. Priority Assignment in Waiting Line Problems , 1954, Oper. Res..
[16] Shimon Y. Nof,et al. Operational analysis of an autonomous assembly robotic station , 1989, IEEE Trans. Robotics Autom..
[17] John A. Buzacott,et al. Flow time distributions in aK classM/G/1 priority feedback queue , 1991, Queueing Syst. Theory Appl..
[18] Lajos Takács,et al. Priority queues , 2019, The Art of Multiprocessor Programming.