The structure and activity of fungal lipases in bile-salt solutions

[1]  O. Barbosa,et al.  Biotechnological prospects of the lipase from Mucor javanicus , 2013 .

[2]  E. Ermakova,et al.  Micellar catalytic effect as a factor of lipase activity regulation , 2012, Doklady Biochemistry and Biophysics.

[3]  Quanshun Li,et al.  Lipase/esterase-catalyzed synthesis of aliphatic polyesters via polycondensation: A review , 2012 .

[4]  Quanshun Li,et al.  Lipase/esterase-catalyzed ring-opening polymerization: A green polyester synthesis technique , 2011 .

[5]  Roberto Fernandez-Lafuente,et al.  Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modification , 2010 .

[6]  T. Tan,et al.  Biodiesel production with immobilized lipase: A review. , 2010, Biotechnology advances.

[7]  Y. Liu,et al.  Micro-environmental influences on the fluorescence of tryptophan. , 2010, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[8]  K. Holmberg,et al.  Interfacial mechanism of lipolysis as self-regulated process. , 2010, Biophysical chemistry.

[9]  S. Egelhaaf,et al.  Self-assembly in aqueous bile salt solutions , 2010 .

[10]  R Miller,et al.  Lipases at interfaces: a review. , 2009, Advances in colloid and interface science.

[11]  R. Fernández-Lafuente,et al.  Interfacially activated lipases against hydrophobic supports: Effect of the support nature on the biocatalytic properties , 2008 .

[12]  Yan Zhao Facial amphiphiles in molecular recognition: From unusual aggregates to solvophobically driven foldamers , 2007 .

[13]  F. Carrière,et al.  Exploring the specific features of interfacial enzymology based on lipase studies. , 2006, Biochimica et biophysica acta.

[14]  N. C. Price,et al.  How to study proteins by circular dichroism. , 2005, Biochimica et biophysica acta.

[15]  Samrat Mukhopadhyay,et al.  Chemistry and biology of bile acids , 2004 .

[16]  Y. Reshetnyak,et al.  Decomposition of protein tryptophan fluorescence spectra into log-normal components. I. Decomposition algorithms. , 2001, Biophysical journal.

[17]  Y. Reshetnyak,et al.  Decomposition of protein tryptophan fluorescence spectra into log-normal components. II. The statistical proof of discreteness of tryptophan classes in proteins. , 2001, Biophysical journal.

[18]  R. Verger,et al.  Interfacial catalysis by lipases , 2001 .

[19]  J. Schrag,et al.  Analogs of reaction intermediates identify a unique substrate binding site in Candida rugosa lipase. , 1995, Biochemistry.

[20]  G G Dodson,et al.  The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 A resolution. , 1992, Journal of molecular biology.

[21]  N. Greenfield Using circular dichroism spectra to estimate protein secondary structure , 2007, Nature Protocols.

[22]  Y. Zuev,et al.  Catalytic activity, structure and stability of trypsin in an AOT-stabilised water-in-decane microemulsion , 2001 .

[23]  R. Verger ‘Interfacial activation’ of lipases: facts and artifacts , 1997 .

[24]  S. Petersen,et al.  Lipases : their structure, biochemistry and application , 1994 .