Iterative area filtering of multichannel images

Owing to the absence of total ordering between vectors of more than one dimension, most morphological transformations are not directly applicable to multichannel images. In this paper, we show that area based operators can be extended to the processing of multichannel images by using the quasi-flat zones and seeded region growing paradigms. The method is iterative in the sense that it starts with the smallest non-unitary quasi-flat zones until an automatically derived contrast threshold value is reached. Pseudo-code is given for all algorithms. We illustrate their usefulness for the simplification of complex natural images such as those occurring in satellite images of the earth.

[1]  Claude L. Fennema,et al.  Scene Analysis Using Regions , 1970, Artif. Intell..

[2]  F. Meyer,et al.  Color image segmentation , 1992 .

[3]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[4]  Philippe Salembier,et al.  Flat zones filtering, connected operators, and filters by reconstruction , 1995, IEEE Trans. Image Process..

[5]  Azriel Rosenfeld,et al.  On connectivity properties of grayscale pictures , 1981, Pattern Recognit..

[6]  Andrew Mehnert,et al.  An improved seeded region growing algorithm , 1997, Pattern Recognit. Lett..

[7]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Edmond J. Breen,et al.  An Evaluation of Priority Queues for Mathematical Morphology , 1994, ISMM.

[9]  Montse Pardàs,et al.  Morphological operators for image and video compression , 1996, IEEE Trans. Image Process..

[10]  Pierre Soille,et al.  Mathematical Morphology and Its Applications to Image Processing , 1994, Computational Imaging and Vision.

[11]  Pierre Soille,et al.  Advances in mathematical morphology applied to geoscience and remote sensing , 2002, IEEE Trans. Geosci. Remote. Sens..

[12]  Vincent Agnus,et al.  Morphology on Label Images: Flat-Type Operators and Connections , 2005, Journal of Mathematical Imaging and Vision.

[13]  Morris Goldberg,et al.  Hierarchy in Picture Segmentation: A Stepwise Optimization Approach , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  José Crespo,et al.  The flat zone approach: A general low-level region merging segmentation method , 1997, Signal Process..

[15]  Montse Pardàs,et al.  Hierarchical morphological segmentation for image sequence coding , 1994, IEEE Trans. Image Process..

[16]  Kannan,et al.  ON IMAGE SEGMENTATION TECHNIQUES , 2022 .

[17]  Fernand Meyer,et al.  The levelings , 1998 .

[18]  Petros Maragos,et al.  Nonlinear Scale-Space Representation with Morphological Levelings , 2000, J. Vis. Commun. Image Represent..

[19]  B. S. Manjunath,et al.  Color image segmentation , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[20]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[21]  Andrea Baraldi,et al.  Single linkage region growing algorithms based on the vector degree of match , 1996, IEEE Trans. Geosci. Remote. Sens..

[22]  Fernand Meyer,et al.  Levelings, Image Simplification Filters for Segmentation , 2004, Journal of Mathematical Imaging and Vision.

[23]  Philippe Salembier,et al.  Auto-dual connected operators based on iterative merging algorithms , 1998 .

[24]  Pierre Soille,et al.  Iterative Area Seeded Region Growing for Multichannel Image Simplification , 2005, ISMM.

[25]  Pierre Soille,et al.  Beyond self-duality in morphological image analysis , 2005, Image Vis. Comput..

[26]  Pierre Soille,et al.  Morphological Refinement of an Image Segmentation , 2005, CAIP.