Soil texture and altitude, respectively, largely determine the floristic gradient of the most diverse fog oasis in the Peruvian desert

Abstract: Studying species turnover along gradients is a key topic in tropical ecology. Crucial drivers, among others, are fog deposition and soil properties. In northern Peru, a fog-dependent vegetation formation develops on mountains along the hyper-arid coast. Despite their uniqueness, these fog oases are largely uninvestigated. This study addresses the influence of environmental factors on the vegetation of these unique fog oases. Accordingly, vegetation and soil properties were recorded on 66 4 × 4-m plots along an altitudinal gradient ranging from 200 to 950 m asl. Ordination and modelling techniques were used to study altitudinal vegetation belts and floristic composition. Four vegetation belts were identified: a low-elevation Tillandsia belt, a herbaceous belt, a bromeliad belt showing highest species richness and an uppermost succulent belt. Different altitudinal levels might reflect water availability, which is highest below the temperature inversion at around 700 m asl. Altitude alone explained 96% of the floristic composition. Soil texture and salinity accounted for 88%. This is in contrast with more humid tropical ecosystems where soil nutrients appear to be more important. Concluding, this study advances the understanding of tropical gradients in fog-dependent and ENSO-affected ecosystems. RESUMEN El estudio de recambio de especies a lo largo de gradientes es un tema clave en la ecología tropical. Los conductores cruciales, entre otros, son la deposición de niebla y las propiedades del suelo. En el norte de Perú, una formación vegetal dependiente de las nubes estratos se desarrolla en las montañas a lo largo de la costa hiperárida. A pesar de su singularidad, estos oasis de niebla están en gran parte sin investigar. Este estudio aborda la influencia de los factores ambientales sobre la vegetación de estos oasis de niebla únicos. En consecuencia, las propiedades de la vegetación y el suelo se registraron en 66 parcelas de 4 × 4-m a lo largo de un gradiente altitudinal que oscila entre 200 y 950 m.s.n.m. Técnicas de ordenación y modelos fueron utilizados para estudiar los cinturones altitudinales de vegetación y composición florística. Se identificaron cuatro pisos de vegetación: a baja altitud un cinturón de Tillandsia, un cinturón de herbáceas, luego un cinturón de bromelias mostrando elevada riqueza de especies y finalmente un cinturón en la parte superior constituido por suculentas. Los diferentes niveles altitudinales podrían reflejar la disponibilidad de agua, la cual es más alta por debajo de la inversión de temperatura a unos 700 m.s.n.m. La altitud sola explicó el 96% de la composición florística. La textura del suelo y la salinidad representaron el 88%. Esto está en contraste con los ecosistemas tropicales más húmedos donde los nutrientes del suelo aparecen ser más importantes. En conclusión, este estudio ayuda a la comprensión de los gradientes en los ecosistemas tropicales tanto de los dependientes de la niebla así como de los afectados por ENSO.

[1]  G. Pope,et al.  A New Conceptual Model for Understanding Geographical Variations in Weathering , 1995 .

[2]  Robert K. Colwell,et al.  The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient , 2007 .

[3]  P. Fabian,et al.  Spatial and temporal dynamics of atmospheric water inputs in tropical mountain forests of South Ecuador , 2011 .

[4]  Carrie V. Kappel,et al.  Coastal Ecosystem-Based Management with Nonlinear Ecological Functions and Values , 2008, Science.

[5]  B. Sandel,et al.  Reconsidering null models of diversity: Do geometric constraints on species ranges necessarily cause a mid‐domain effect? , 2006 .

[6]  Jörg Bendix,et al.  Gradients in a Tropical Mountain Ecosystem of Ecuador , 2008 .

[7]  R. Whittaker Evolution and measurement of species diversity , 1972 .

[8]  L. Malizia,et al.  Tree species distribution in Andean forests: influence of regional and local factors , 2011, Journal of Tropical Ecology.

[9]  K. Wesche,et al.  Effects of fertilization and irrigation on productivity, plant nutrient contents and soil nutrients in southern Mongolia , 2011, Plant and Soil.

[10]  M. Kessler Pteridophyte species richness in Andean forests in Bolivia , 2001, Biodiversity & Conservation.

[11]  C. Rahbek The role of spatial scale and the perception of large‐scale species‐richness patterns , 2004 .

[12]  A. Goudie,et al.  Weathering in the central Namib Desert, Namibia: Controls, processes and implications , 2013 .

[13]  P. Marquet,et al.  Geographical distribution of Tillandsia lomas in the Atacama Desert, northern Chile , 2006 .

[14]  W. Whitford,et al.  Effects of simulated storm sizes and nitrogen on three Chihuahuan Desert perennial herbs and a grass , 2011 .

[15]  G. Kattan,et al.  Bird diversity along elevational gradients in the Andes of Colombia: area and mass effects , 2004 .

[16]  M. Hill,et al.  Detrended correspondence analysis: An improved ordination technique , 2004, Vegetatio.

[17]  J. Terborgh Distribution on Environmental Gradients: Theory and a Preliminary Interpretation of Distributional Patterns in the Avifauna of the Cordillera Vilcabamba, Peru , 1971 .

[18]  P. Legendre,et al.  Partialling out the spatial component of ecological variation , 1992 .

[19]  G. Sarmiento,et al.  Nitrogen and phosphorus as limiting factors for growth and primary production in a flooded savanna in the Venezuelan Llanos , 2006, Journal of Tropical Ecology.

[20]  Omar Cabrera,et al.  What Factors Affect Diversity and Species Composition of Endangered Tumbesian Dry Forests in Southern Ecuador? , 2011 .

[21]  M. Abdel-Dayem,et al.  Vegetation analysis and soil characteristics of five common desert climbing plants in Egypt , 2011, Turkish Journal of Botany.

[22]  小野 幹雄 Taxonomic and ecological studies on the lomas vegetation in the Pacific coast of Peru , 1982 .

[23]  C. Rahbek The elevational gradient of species richness: a uniform pattern? , 1995 .

[24]  P. Ashton Floristic zonation of tree communities on wet tropical mountains revisited , 2003 .

[25]  Alexander Brenning,et al.  Geomorphic process rates of landslides along a humidity gradient in the tropical Andes , 2012 .

[26]  T. Hedderson,et al.  Bryophyte diversity and range size distribution along two altitudinal gradients: Continent vs. island , 2012 .

[27]  Kalle Ruokolainen,et al.  LINKING FLORISTIC PATTERNS WITH SOIL HETEROGENEITY AND SATELLITE IMAGERY IN ECUADORIAN AMAZONIA , 2003 .

[28]  Robert H. Whittaker,et al.  Vegetation of the Santa Catalina Mountains, Arizona: A Gradient Analysis of the South Slope , 1965 .

[29]  Carsten Rahbek,et al.  The Mid‐Domain Effect and Species Richness Patterns:What Have We Learned So Far? , 2004, The American Naturalist.

[30]  J. Bendix,et al.  El Niño meets La Niña – anomalous rainfall patterns in the “traditional” El Niño region of southern Ecuador , 2011 .

[31]  Clinton N. Jenkins,et al.  Volume and Geographical Distribution of Ecological Research in the Andes and the Amazon, 1995–2008 , 2011 .

[32]  D. A. White,et al.  Vegetation patterns and environmental gradients in tropical dry forests of the northern Yucatan Peninsula , 2004 .

[33]  J. Ehleringer,et al.  ENSO effects on primary productivity in Southern Atacama desert , 2006 .

[34]  H. Wehrden,et al.  Surveying Southern Mongolia: application of multivariate classification methods in drylands with low diversity and long floristic gradients , 2011 .

[35]  G. Graves,et al.  Multiscale assessment of patterns of avian species richness , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Grytnes Ecological interpretations of the mid‐domain effect , 2003 .

[37]  J. Lehmann,et al.  Nutrient availability at different altitudes in a tropical montane forest in Ecuador , 2008, Journal of Tropical Ecology.

[38]  Chengyi Zhao,et al.  Spatial patterns of desert annuals in relation to shrub effects on soil moisture , 2010 .

[39]  F. Putz,et al.  Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest , 2012 .

[40]  M. Dillon THE SOLANACEAE OF THE LOMAS FORMATIONS OF COASTAL PERU AND CHILE , 2005 .

[41]  K. Weathers,et al.  Bromeliad growth and stoichiometry: responses to atmospheric nutrient supply in fog-dependent ecosystems of the hyper-arid Atacama Desert, Chile , 2011, Oecologia.

[42]  E. A. Kirkby,et al.  Principles of Plant Nutrition , 2001, Springer Netherlands.

[43]  P. Fearnside,et al.  Influence of soils and topography on Amazonian tree diversity: a landscape-scale study , 2010 .

[44]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[45]  Jannes Muenchow,et al.  Coupling ordination techniques and GAM to spatially predict vegetation assemblages along a climatic gradient in an ENSO‐affected region of extremely high climate variability , 2013 .

[46]  P. Rundel Ecological Relationships of Desert Fog Zone Lichens"l3 , 1978 .

[47]  Milena Holmgren,et al.  Rainfall‐Tuned Management Facilitates Dry Forest Recovery , 2012 .

[48]  V. Sánchez‐Cordero Elevation gradients of diversity for rodents and bats in Oaxaca, Mexico , 2001 .

[49]  L. Soto-Pinto,et al.  Resolving the Conflict Between Ecosystem Protection and Land Use in Protected Areas of the Sierra Madre de Chiapas, Mexico , 2012, Environmental Management.

[50]  Gabor Grothendieck,et al.  Lattice: Multivariate Data Visualization with R , 2008 .

[51]  Frank Eckardt,et al.  The nature of moisture at Gobabeb, in the central Namib Desert , 2013 .

[52]  H. Blume,et al.  Bodenkundliches Praktikum : eine Einführung in pedologische Arbeiten für Ökologen, insbesondere Land- und Forstwirte, und für Geowissenschaftler , 1966 .

[53]  A. Page Methods of soil analysis. Part 2. Chemical and microbiological properties. , 1982 .

[54]  P. Rundel,et al.  Ecological patterns in theBromeliaceae of the lomas formations of Coastal Chile and Peru , 1998, Plant Systematics and Evolution.

[55]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[56]  H. Viles,et al.  Terricolous lichens in the northern Namib Desert of Namibia: distribution and community composition , 2005, The Lichenologist.

[57]  M. Richter,et al.  PHYTOGEOGRAPHIC DIVISIONS, CLIMATE CHANGE AND PLANT DIEBACK ALONG THE COASTAL DESERT OF NORTHERN CHILE , 2011 .

[58]  J. Beaman,et al.  Elevational species richness patterns for vascular plants on Mount Kinabalu, Borneo , 2006 .

[59]  Zongming Wang,et al.  Landscape and Land‐Use Effects on the Spatial Variation of Soil Chemical Properties , 2009 .

[60]  José M. Paruelo,et al.  Ecosystem service evaluation to support land-use policy , 2012 .

[61]  Fan-Rui Meng,et al.  Water input from fog drip in the tropical seasonal rain forest of Xishuangbanna, South-West China , 2004, Journal of Tropical Ecology.

[62]  Jannes Muenchow,et al.  Predictive Mapping of Species Richness and Plant Species' Distributions of a Peruvian Fog Oasis Along an Altitudinal Gradient , 2013 .

[63]  S. Sabaté,et al.  Climatic signals in growth and its relation to ENSO events of two Prosopis species following a latitudinal gradient in South America , 2006 .

[64]  P. Glynn,et al.  Global ecological consequences of the 1982-83 El Nino-Southern Oscillation , 1991 .

[65]  V. Hollowell,et al.  A Festschrift for William G. D'arcy : , 2005 .

[66]  P. Rundel,et al.  The Botanical Response of the Atacama and Peruvian Desert Floras to the 1982-83 El Niño Event , 1990 .