Quantum tasks in Minkowski space

The fundamental properties of quantum information and its applications to computing and cryptography have been greatly illuminated by considering information-theoretic tasks that are provably possible or impossible within non-relativistic quantum mechanics. I describe here a general framework for defining tasks within (special) relativistic quantum theory and illustrate it with examples from relativistic quantum cryptography and relativistic distributed quantum computation. The framework gives a unified description of all tasks previously considered and also defines a large class of new questions about the properties of quantum information in relation to Minkowski causality. It offers a way of exploring interesting new fundamental tasks and applications, and also highlights the scope for a more systematic understanding of the fundamental information-theoretic properties of relativistic quantum theory.

[1]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  E. Schrödinger Probability relations between separated systems , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[4]  J. Bell,et al.  The Theory of Local Beables , 1975 .

[5]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[6]  D. Dieks Communication by EPR devices , 1982 .

[7]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[8]  Horace P. Yuen,et al.  Amplification of quantum states and noiseless photon amplifiers , 1986 .

[9]  N. Gisin Stochastic quantum dynamics and relativity , 1989 .

[10]  Nicolas Gisin,et al.  Weinberg's non-linear quantum mechanics and supraluminal communications , 1990 .

[11]  Lucien Hardy,et al.  A new way to obtain bell inequalities , 1991 .

[12]  Marek Czachor,et al.  Mobility and non-separability , 1991 .

[13]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[14]  C. Crépeau,et al.  A quantum bit commitment scheme provably unbreakable by both parties , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[15]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[16]  Yuen,et al.  Impossibility of measuring the wave function of a single quantum system. , 1996, Physical review letters.

[17]  Buzek,et al.  Quantum copying: Beyond the no-cloning theorem. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[18]  Schumacher,et al.  Noncommuting mixed states cannot be broadcast. , 1995, Physical review letters.

[19]  Hoi-Kwong Lo,et al.  Is Quantum Bit Commitment Really Possible? , 1996, ArXiv.

[20]  S. Massar,et al.  Optimal Quantum Cloning Machines , 1997, quant-ph/9705046.

[21]  Dominic Mayers Unconditionally secure quantum bit commitment is impossible , 1997 .

[22]  R. Werner OPTIMAL CLONING OF PURE STATES , 1998, quant-ph/9804001.

[23]  D. Bruß,et al.  Optimal Universal Quantum Cloning and State Estimation , 1997, quant-ph/9712019.

[24]  Adrian Kent,et al.  Unconditionally Secure Bit Commitment , 1998, quant-ph/9810068.

[25]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[26]  R. Werner,et al.  Optimal cloning of pure states, testing single clones , 1998, quant-ph/9807010.

[27]  G. Lindblad A General No-Cloning Theorem , 1999 .

[28]  Adrian Kent,et al.  Coin Tossing is Strictly Weaker than Bit Commitment , 1998, quant-ph/9810067.

[29]  S. Braunstein,et al.  Impossibility of deleting an unknown quantum state. , 1999, Nature.

[30]  Richard Jozsa A stronger no-cloning theorem , 2002 .

[31]  Alain Aspect,et al.  Speakable and Unspeakable in Quantum Mechanics: Free variables and local causality , 2004 .

[32]  Adrian Kent,et al.  Variable Bias Coin Tossing , 2005, ArXiv.

[33]  Adrian Kent,et al.  Secure Classical Bit Commitment Using Fixed Capacity Communication Channels , 1999, Journal of Cryptology.

[34]  Nonlinearity without superluminality (4 pages) , 2005 .

[35]  Adrian Kent Nonlinearity without superluminality , 2005 .

[36]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[37]  Paul G. Kwiat,et al.  Relativistic Quantum Cryptography , 2006 .

[38]  Avinatan Hassidim,et al.  Secure Multiparty Quantum Computation with (Only) a Strict Honest Majority , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[39]  N. Gisin,et al.  From Bell's theorem to secure quantum key distribution. , 2005, Physical review letters.

[40]  Stefano Pironio,et al.  Maximally Non-Local and Monogamous Quantum Correlations , 2006, Physical review letters.

[41]  S. Massar,et al.  Efficient quantum key distribution secure against no-signalling eavesdroppers , 2006, quant-ph/0605246.

[42]  Andreas J. Winter,et al.  Unconditional security of key distribution from causality constraints , 2006, ArXiv.

[43]  R. Werner,et al.  Reexamination of quantum bit commitment: The possible and the impossible , 2006, quant-ph/0605224.

[44]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[45]  Gilles Brassard,et al.  Anonymous Quantum Communication , 2007, ASIACRYPT.

[46]  Roger Colbeck,et al.  Quantum And Relativistic Protocols For Secure Multi-Party Computation , 2009, 0911.3814.

[47]  A. Winter,et al.  Information causality as a physical principle , 2009, Nature.

[48]  Rafail Ostrovsky,et al.  Position Based Cryptography , 2009, CRYPTO.

[49]  Esther Hanggi,et al.  Quantum Cryptography Based Solely on Bell's Theorem , 2009 .

[50]  V. Scarani,et al.  Device-independent quantum key distribution secure against collective attacks , 2009, 0903.4460.

[51]  Lluis Masanes,et al.  Universally-composable privacy amplification from causality constraints , 2008, Physical review letters.

[52]  M. Mckague,et al.  Device independent quantum key distribution secure against coherent attacks with memoryless measurement devices , 2009, 0908.0503.

[53]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[54]  Adrian Kent,et al.  Quantum Tagging: Authenticating Location via Quantum Information and Relativistic Signalling Constraints , 2010, ArXiv.

[55]  Robert A. Malaney,et al.  Location-dependent communications using quantum entanglement , 2010, 1003.0949.

[56]  Renato Renner,et al.  Device-Independent Quantum Key Distribution with Commuting Measurements , 2010, ArXiv.

[57]  Adrian Kent,et al.  Location-Oblivious Data Transfer with Flying Entangled Qudits , 2011, ArXiv.

[58]  A. Acín,et al.  Secure device-independent quantum key distribution with causally independent measurement devices. , 2010, Nature communications.

[59]  Adrian Kent Quantum tagging for tags containing secret classical data , 2011 .

[60]  G. D’Ariano,et al.  Informational derivation of quantum theory , 2010, 1011.6451.

[61]  Salman Beigi,et al.  Simplified instantaneous non-local quantum computation with applications to position-based cryptography , 2011, 1101.1065.

[62]  Adrian Kent,et al.  Private randomness expansion with untrusted devices , 2010, 1011.4474.

[63]  N Aharon,et al.  Fully distrustful quantum bit commitment and coin flipping. , 2011, Physical review letters.

[64]  Adrian Kent,et al.  Unconditionally secure bit commitment with flying qudits , 2011, ArXiv.

[65]  L. Hardy The operator tensor formulation of quantum theory , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[66]  Bob Coecke,et al.  The logic of quantum mechanics - Take II , 2012, ArXiv.

[67]  Adrian Kent,et al.  Unconditionally Secure Bit Commitment by Transmitting Measurement Outcomes , 2011, Physical review letters.

[68]  Adrian Kent,et al.  Memory attacks on device-independent quantum cryptography. , 2012, Physical review letters.

[69]  Adrian Kent,et al.  A no-summoning theorem in relativistic quantum theory , 2011, Quantum Inf. Process..

[70]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..