Index Appearance Record for Transforming Rabin Automata into Parity Automata

Transforming deterministic \(\omega \)-automata into deterministic parity automata is traditionally done using variants of appearance records. We present a more efficient variant of this approach, tailored to Rabin automata, and several optimizations applicable to all appearance records. We compare the methods experimentally and find out that our method produces smaller automata than previous approaches. Moreover, the experiments demonstrate the potential of our method for LTL synthesis, using LTL-to-Rabin translators. It leads to significantly smaller parity automata when compared to state-of-the-art approaches on complex formulae.

[1]  Jan Kretínský,et al.  Deterministic Automata for the (F,G)-fragment of LTL , 2012, CAV.

[2]  Rajeev Alur,et al.  Deterministic generators and games for Ltl fragments , 2004, TOCL.

[3]  Amir Pnueli,et al.  On the synthesis of a reactive module , 1989, POPL '89.

[4]  Alexandre Duret-Lutz,et al.  Spot 2.0 - A Framework for LTL and \omega -Automata Manipulation , 2016, ATVA.

[5]  Jan Strejcek,et al.  Effective Translation of LTL to Deterministic Rabin Automata: Beyond the (F, G)-Fragment , 2013, ATVA.

[6]  Jan Kretínský,et al.  From LTL to Deterministic Automata: A Safraless Compositional Approach , 2014, CAV.

[7]  Amir Pnueli,et al.  Synthesis of Reactive(1) Designs , 2006, VMCAI.

[8]  Michael Luttenberger,et al.  Solving Mean-Payoff Games on the GPU , 2016, ATVA.

[9]  Christof Löding Optimal Bounds for Transformations of omega-Automata , 1999, FSTTCS.

[10]  Oliver Friedmann,et al.  Solving Parity Games in Practice , 2009, ATVA.

[11]  C. Baier,et al.  Experiments with Deterministic ω-Automata for Formulas of Linear Temporal Logic , 2005 .

[12]  Alexandre Duret-Lutz,et al.  Spot 2 . 0 — a framework for LTL and ω-automata manipulation , 2016 .

[13]  Jan Kretínský,et al.  Rabinizer 3: Safraless Translation of LTL to Small Deterministic Automata , 2014, ATVA.

[14]  Christof Löding,et al.  Methods for the Transformation of ω-Automata : Complexity and Connection to Second Order Logic , 1998 .

[15]  S. Safra,et al.  On the complexity of omega -automata , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[16]  Christel Baier,et al.  Experiments with deterministic omega-automata for formulas of linear temporal logic , 2006, Theor. Comput. Sci..

[17]  Nir Piterman,et al.  From Nondeterministic Buchi and Streett Automata to Deterministic Parity Automata , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[18]  Roman R. Redziejowski An Improved Construction of Deterministic Omega-automaton Using Derivatives , 2012, Fundam. Informaticae.

[19]  Yuri Gurevich,et al.  Trees, automata, and games , 1982, STOC '82.

[20]  Sven Schewe,et al.  Tighter Bounds for the Determinisation of Büchi Automata , 2009, FoSSaCS.

[21]  Yih-Kuen Tsay,et al.  GOAL for Games, Omega-Automata, and Logics , 2013, CAV.

[22]  Stefan Schwoon Determinization and Complementation of Streett Automata , 2001, Automata, Logics, and Infinite Games.

[23]  George S. Avrunin,et al.  Patterns in property specifications for finite-state verification , 1999, Proceedings of the 1999 International Conference on Software Engineering (IEEE Cat. No.99CB37002).

[24]  Shmuel Safra,et al.  Exponential determinization for ω-automata with strong-fairness acceptance condition (extended abstract) , 1992, STOC '92.

[25]  Orna Kupferman,et al.  Safraless decision procedures , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[26]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.