Deterministic error correction for nonlocal spatial-polarization hyperentanglement

Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication.

[1]  Fuguo Deng,et al.  Entanglement distillation for quantum communication network with atomic-ensemble memories. , 2014, Optics express.

[2]  R. Laflamme,et al.  Robust quantum communication using a polarization-entangled photon pair. , 2004, Physical review letters.

[3]  Fuguo Deng One-step error correction for multipartite polarization entanglement , 2011, 1107.0093.

[4]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[5]  Chao Zheng,et al.  Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs , 2014 .

[6]  Yu-Bo Sheng,et al.  Deterministic polarization entanglement purification using time-bin entanglement , 2013, 1311.0470.

[7]  Nathan K Langford,et al.  Generation of hyperentangled photon pairs. , 2005, Physical review letters.

[8]  Lian-Ao Wu,et al.  Overview of quantum memory protection and adiabaticity induction by fast signal control , 2014, 1412.1783.

[9]  Lan Zhou,et al.  Deterministic entanglement distillation for secure double-server blind quantum computation , 2013, Scientific Reports.

[10]  Lixiang Chen,et al.  Quantum digital spiral imaging , 2014, Light: Science & Applications.

[11]  G. Long,et al.  General scheme for superdense coding between multiparties , 2001, quant-ph/0110112.

[12]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[13]  Chuan Wang,et al.  Quantum key distribution using polarization and frequency hyperentangled photons , 2009 .

[14]  Bao-Cang Ren,et al.  General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. , 2014, Optics express.

[15]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[16]  C. Hu,et al.  Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity , 2010, 1005.5545.

[17]  Chuan Wang,et al.  Hyperentanglement purification with linear optics assisted by W-states , 2015, Quantum Inf. Process..

[18]  Filippo Caruso,et al.  Observation of Noise-Assisted Transport in an All-Optical Cavity-Based Network. , 2015, Physical review letters.

[19]  Hiroki Takesue,et al.  Entanglement distribution over 300 km of fiber. , 2013, Optics express.

[20]  Philippe Goldner,et al.  Storage of hyperentanglement in a solid-state quantum memory , 2014, 1412.6488.

[21]  Tie-Jun Wang,et al.  Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities , 2012 .

[22]  R Laflamme,et al.  Experimental quantum communication without a shared reference frame. , 2006, Physical review letters.

[23]  Fuguo Deng,et al.  Faithful qubit transmission against collective noise without ancillary qubits , 2007, 0708.0068.

[24]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[25]  Jian-Wei Pan,et al.  Experimental entanglement purification of arbitrary unknown states , 2003, Nature.

[26]  Ru Zhang,et al.  One-step hyperentanglement purification and hyperdistillation with linear optics. , 2015, Optics express.

[27]  Tie-Jun Wang,et al.  Linear-optical implementation of hyperdistillation from photon loss , 2014 .

[28]  Masato Koashi,et al.  Efficient decoherence-free entanglement distribution over lossy quantum channels. , 2011, Physical review letters.

[29]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[30]  T Honjo,et al.  Long-distance entanglement-based quantum key distribution over optical fiber. , 2008, Optics express.

[31]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[32]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[33]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[34]  Demetrios A. Kalamidas,et al.  Linear optical scheme for error-free entanglement distribution and a quantum repeater , 2006, quant-ph/0601203.

[35]  Jian-Wei Pan,et al.  Polarization entanglement purification using spatial entanglement. , 2001, Physical review letters.

[36]  Guang-Can Guo,et al.  Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons , 2015 .

[37]  G. Vallone,et al.  Hyperentanglement of two photons in three degrees of freedom , 2008, 0810.4461.

[38]  Robert B. Griffiths,et al.  Quantum Error Correction , 2011 .

[39]  N Imoto,et al.  Faithful qubit distribution assisted by one additional qubit against collective noise. , 2005, Physical review letters.

[40]  Gui-Lu Long,et al.  Quantum secure direct communication , 2011 .

[41]  A. Zeilinger,et al.  Generation and confirmation of a (100 × 100)-dimensional entangled quantum system , 2013, Proceedings of the National Academy of Sciences.

[42]  Yu-Bo Sheng,et al.  Complete hyperentangled-Bell-state analysis for quantum communication , 2010, 1103.0230.

[43]  Paul G. Kwiat,et al.  Hyper-entangled states , 1997 .

[44]  Hiroki Takesue Entangling time-bin qubits with a switch , 2014 .

[45]  Fu-Guo Deng,et al.  Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. , 2012, Optics express.

[46]  Xi Chen,et al.  Expected number of quantum channels in quantum networks , 2015, Scientific Reports.

[47]  Yu-Bo Sheng,et al.  Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement , 2009, 0912.0079.

[48]  Yu-Bo Sheng,et al.  Recyclable amplification protocol for the single-photon entangled state , 2015 .

[49]  Fabio Sciarrino,et al.  Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory , 2015, Nature Communications.

[50]  Fu-Guo Deng,et al.  Practical hyperentanglement concentration for two-photon four-qubit systems with linear optics , 2013, 1306.0050.

[51]  Lan Zhou,et al.  Efficient N-particle W state concentration with different parity check gates , 2012, 1204.1492.

[52]  S. Walborn,et al.  Hyperentanglement-assisted Bell-state analysis , 2003, quant-ph/0307212.

[53]  Jian-Wei Pan,et al.  Quantum teleportation of multiple degrees of freedom of a single photon , 2015, Nature.

[54]  Fu-Guo Deng,et al.  Two-step hyperentanglement purification with the quantum-state-joining method , 2014, 1408.0048.

[55]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[56]  Shohini Ghose,et al.  Hyperconcentration for multipartite entanglement via linear optics , 2014, 1601.03755.

[57]  Marco Barbieri,et al.  Polarization-momentum hyperentangled states : Realization and characterization , 2005 .

[58]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[59]  W Tittel,et al.  Distribution of time-bin entangled qubits over 50 km of optical fiber. , 2004, Physical review letters.

[60]  M. Teich,et al.  Decoherence-free subspaces in quantum key distribution. , 2003, Physical review letters.

[61]  Jian-Wei Pan,et al.  Entanglement purification for quantum communication , 2000, Nature.

[62]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[63]  Fu-Guo Deng,et al.  Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities , 2013, 1309.0168.

[64]  Qian Liu,et al.  Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators , 2015, 1507.06108.

[65]  Masato Koashi,et al.  Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace , 2008, 0806.2896.

[66]  Adán Cabello Stronger two-observer all-versus-nothing violation of local realism. , 2005, Physical review letters.

[67]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[68]  Xi-Han Li,et al.  Efficient quantum key distribution over a collective noise channel (6 pages) , 2008, 0808.0042.

[69]  Xihan Li Deterministic polarization-entanglement purification using spatial entanglement , 2010, 1010.5301.

[70]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[71]  R. Laflamme,et al.  Robust polarization-based quantum key distribution over a collective-noise channel. , 2003, Physical review letters.

[72]  Xi-Han Li,et al.  Efficient hyperconcentration of nonlocal multipartite entanglement via the cross-Kerr nonlinearity. , 2015, Optics express.

[73]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[74]  Fuguo Deng,et al.  Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity , 2008, 0805.0032.

[75]  Fuguo Deng,et al.  One-step deterministic polarization-entanglement purification using spatial entanglement , 2010, 1008.3509.