Ant colony systems optimization applied to BNF grammars rule derivation (ACORD algorithm)

Ant colony systems have been widely employed in optimization issues primarily focused on path finding optimization, such as travelling salesman problem. The main advantage lies in the choice of the edge to be explored, defined using pheromone trails. This paper proposes the use of ant colony systems to explore a Backus–Naur form grammar whose elements are solutions to a given problem. Similar models, without using ant colonies, have been used to solve optimization problems or to automatically generate programs such as grammatical swarm (based on particle swarm optimization) and grammatical evolution (based on genetic algorithms). This work presents the application of proposed ant colony rule derivation algorithm and benchmarks this novel approach in a well-known deceptive problem, the Santa Fe Trail. Proposed algorithm opens the way to a new branch of research in swarm intelligence, which until now has been almost nonexistent, using ant colony algorithms to generate solutions of a given problem described by a BNF grammar with the advantage of genotype/phenotype mapping, described in grammatical evolution. In this case, such mapping is performed based on the pheromone concentration for each production rule. The experimental results demonstrate proposed algorithm outperforms grammatical evolution algorithm in the Santa Fe Trail problem with higher success rates and better solutions in terms of the required steps.

[1]  Dirk Sudholt,et al.  Rigorous Analyses for the Combination of Ant Colony Optimization and Local Search , 2008, ANTS Conference.

[2]  Jing Xiao,et al.  A hybrid ant colony optimization for continuous domains , 2011, Expert Syst. Appl..

[3]  Phen Chiak See,et al.  A new minimum pheromone threshold strategy (MPTS) for max-min ant system , 2009, Appl. Soft Comput..

[4]  Anthony Brabazon,et al.  Foundations in Grammatical Evolution for Dynamic Environments , 2009, Studies in Computational Intelligence.

[5]  Conor Ryan,et al.  A Re-examination Of The Cart Centering Problem Using The Chorus System , 2002, GECCO.

[6]  Walter J. Gutjahr,et al.  A Graph-based Ant System and its convergence , 2000, Future Gener. Comput. Syst..

[7]  Fred W. Glover,et al.  Traveling salesman problem heuristics: Leading methods, implementations and latest advances , 2011, Eur. J. Oper. Res..

[8]  Michael O'Neill,et al.  Grammatical Evolution: Evolving Programs for an Arbitrary Language , 1998, EuroGP.

[9]  Michael O'Neill,et al.  Grammatical evolution - evolutionary automatic programming in an arbitrary language , 2003, Genetic programming.

[10]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[11]  A. P. Engelbrecht,et al.  Particle Swarm Optimization: Global Best or Local Best? , 2013, 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence.

[12]  Zehui Shao,et al.  An Effective Simulated Annealing Algorithm for Solving the Traveling Salesman Problem , 2009 .

[13]  Conor Ryan,et al.  Grammatical Evolution , 2001, Genetic Programming Series.

[14]  Michael Guntsch Ant algorithms in stochastic and multi-criteria environments , 2004 .

[15]  Gerardo Beni,et al.  From Swarm Intelligence to Swarm Robotics , 2004, Swarm Robotics.

[16]  Yuxin Zhao,et al.  From Swarm Intelligence to Metaheuristics: Nature-Inspired Optimization Algorithms , 2016, Computer.

[17]  Wei Xiang,et al.  An ant colony optimization approach for solving an operating room surgery scheduling problem , 2015, Comput. Ind. Eng..

[18]  Milan Tuba,et al.  Comparison of different topologies for island-based multi-colony ant algorithms for the minimum weight vertex cover problem , 2010 .

[19]  Christian Grimme,et al.  Inside a predator-prey model for multi-objective optimization: a second study , 2006, GECCO '06.

[20]  Václav Snásel,et al.  Nature-Inspired Meta-Heuristics on Modern GPUs: State of the Art and Brief Survey of Selected Algorithms , 2013, International Journal of Parallel Programming.

[21]  Thomas Stützle,et al.  MAX-MIN Ant System , 2000, Future Gener. Comput. Syst..

[22]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[23]  Yang Yi,et al.  Improved ant colony optimization algorithm for the traveling salesman problems , 2010 .

[24]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[25]  Riccardo Poli,et al.  Fitness-proportional negative slope coefficient as a hardness measure for genetic algorithms , 2007, GECCO '07.

[26]  Ivan Zelinka,et al.  Investigation on artificial ant using analytic programming , 2006, GECCO '06.

[27]  Zne-Jung Lee,et al.  Genetic algorithm with ant colony optimization (GA-ACO) for multiple sequence alignment , 2008, Appl. Soft Comput..

[28]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[29]  Klaus Meer,et al.  Simulated Annealing versus Metropolis for a TSP instance , 2007, Inf. Process. Lett..

[30]  P.-P. Grasse La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d'interprétation du comportement des termites constructeurs , 1959, Insectes Sociaux.

[31]  William J. Teahan,et al.  Constituent Grammatical Evolution , 2011, IJCAI.

[32]  Franz Rothlauf,et al.  On the Locality of Grammatical Evolution , 2006, EuroGP.

[33]  J. Deneubourg,et al.  Self-organized shortcuts in the Argentine ant , 1989, Naturwissenschaften.

[34]  Petrica C. Pop,et al.  Sensitive Ants in Solving the Generalized Vehicle Routing Problem , 2011, Int. J. Comput. Commun. Control.

[35]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[36]  Michel Gendreau,et al.  A tabu search heuristic for the undirected selective travelling salesman problem , 1998, Eur. J. Oper. Res..

[37]  Maarten Keijzer,et al.  Crossover in Grammatical Evolution , 2003, Genetic Programming and Evolvable Machines.

[38]  Rui Mendes,et al.  Neighborhood topologies in fully informed and best-of-neighborhood particle swarms , 2006 .

[39]  Miguel Nicolau Understanding grammatical evolution: initialisation , 2017, Genetic Programming and Evolvable Machines.

[40]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[41]  Michael O'Neill,et al.  Grammar defined introns: an investigation into grammars, introns, and bias in Grammatical Evolution , 2001 .

[42]  Leandro Nunes de Castro,et al.  Fundamentals of natural computing: an overview , 2007 .

[43]  Manuel Alfonseca,et al.  Evolving a predator-prey ecosystem of mathematical expressions with grammatical evolution , 2015, Complex..

[44]  Michael A. Lones,et al.  Metaheuristics in nature-inspired algorithms , 2014, GECCO.

[45]  Guangzhou Zeng,et al.  Study of genetic algorithm with reinforcement learning to solve the TSP , 2009, Expert Syst. Appl..

[46]  Anthony Brabazon,et al.  Grammatical Swarm: The generation of programs by social programming , 2006, Natural Computing.

[47]  John R. Koza,et al.  Genetic programming as a means for programming computers by natural selection , 1994 .

[48]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[49]  Yanchun Liang,et al.  Particle swarm optimization-based algorithms for TSP and generalized TSP , 2007, Inf. Process. Lett..

[50]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[51]  Ghasem Moslehi,et al.  A hybrid variable neighborhood search algorithm for solving the limited-buffer permutation flow shop scheduling problem with the makespan criterion , 2014, Comput. Oper. Res..

[52]  Ibrahim Kushchu,et al.  Genetic programming and evolutionary generalization , 2002, IEEE Trans. Evol. Comput..

[53]  Riccardo Poli,et al.  Better Trained Ants for Genetic Programming , 1998 .