Preconditioners and Electron Density Optimization in Orbital-Free Density Functional Theory
暂无分享,去创建一个
[1] 著者なし. 16 , 1871, Animals at the End of the World.
[2] J. Alvarellos,et al. Kinetic-energy density functionals with nonlocal terms with the structure of the Thomas-Fermi functional , 2007 .
[3] N. Govind,et al. Orbital-free kinetic-energy density functionals with a density-dependent kernel , 1999 .
[4] Steven D. Schwartz,et al. Theoretical methods in condensed phase chemistry , 2002 .
[5] J. Alvarellos,et al. Approach to kinetic energy density functionals: Nonlocal terms with the structure of the von Weizsäcker functional , 2008 .
[6] Conjugate-gradient optimization method for orbital-free density functional calculations. , 2004, The Journal of chemical physics.
[7] Chen Huang,et al. PAPER www.rsc.org/pccp | Physical Chemistry Chemical Physics Transferable local pseudopotentials for magnesium, aluminum and silicon , 2008 .
[8] Wang,et al. Kinetic-energy functional of the electron density. , 1992, Physical review. B, Condensed matter.
[9] E. Fermi. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente , 1928 .
[10] B. Alder,et al. THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .
[11] N. Govind,et al. Erratum: Orbital-free kinetic-energy density functionals with a density-dependent kernel [Phys. Rev. B60, 16 350 (1999)] , 2001 .
[12] C. Weizsäcker. Zur Theorie der Kernmassen , 1935 .
[13] A. Zunger,et al. Self-interaction correction to density-functional approximations for many-electron systems , 1981 .
[14] Emily A. Carter,et al. Linear-scaling parallel algorithms for the first principles treatment of metals ✩ , 2000 .
[15] Chen Huang,et al. Introducing PROFESS 2.0: A parallelized, fully linear scaling program for orbital-free density functional theory calculations , 2010, Comput. Phys. Commun..
[16] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[17] G. V. Chester,et al. Solid State Physics , 2000 .
[18] C. Brooks. Computer simulation of liquids , 1989 .
[19] William W. Hager,et al. A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..
[20] Emily A. Carter,et al. Introducing PROFESS: A new program for orbital-free density functional theory calculations , 2008, Comput. Phys. Commun..
[21] L. H. Thomas. The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.
[22] Chen Huang,et al. Orbital-free density functional theory simulations of dislocations in aluminum , 2009 .
[23] Emily A. Carter,et al. Nonlocal orbital-free kinetic energy density functional for semiconductors , 2010 .
[24] Linda Hung,et al. Accurate simulations of metals at the mesoscale: Explicit treatment of 1 million atoms with quantum mechanics , 2009 .