Preconditioners and Electron Density Optimization in Orbital-Free Density Functional Theory

Orbital-free density functional theory (OFDFT) is a quantum mechanical method in which the energy of a material depends only on the electron density and ionic positions. We examine some popular algorithms for optimizing the electron density distribution in OFDFT, explaining their suitability, benchmarking their performance, and suggesting some improvements. We start by describing the constrained optimization problem that encompasses electron density optimization. Next, we discuss the line search (including Wolfe conditions) and the nonlinear conjugate gradient and truncated Newton algorithms, as implemented in our open source OFDFT code. We finally focus on preconditioners derived from OFDFT energy functionals. Newly-derived preconditioners are successful for simulation cells of all sizes without regions of low electron-density and for small simulation cells with such regions.

[1]  著者なし 16 , 1871, Animals at the End of the World.

[2]  J. Alvarellos,et al.  Kinetic-energy density functionals with nonlocal terms with the structure of the Thomas-Fermi functional , 2007 .

[3]  N. Govind,et al.  Orbital-free kinetic-energy density functionals with a density-dependent kernel , 1999 .

[4]  Steven D. Schwartz,et al.  Theoretical methods in condensed phase chemistry , 2002 .

[5]  J. Alvarellos,et al.  Approach to kinetic energy density functionals: Nonlocal terms with the structure of the von Weizsäcker functional , 2008 .

[6]  Conjugate-gradient optimization method for orbital-free density functional calculations. , 2004, The Journal of chemical physics.

[7]  Chen Huang,et al.  PAPER www.rsc.org/pccp | Physical Chemistry Chemical Physics Transferable local pseudopotentials for magnesium, aluminum and silicon , 2008 .

[8]  Wang,et al.  Kinetic-energy functional of the electron density. , 1992, Physical review. B, Condensed matter.

[9]  E. Fermi Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente , 1928 .

[10]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[11]  N. Govind,et al.  Erratum: Orbital-free kinetic-energy density functionals with a density-dependent kernel [Phys. Rev. B60, 16 350 (1999)] , 2001 .

[12]  C. Weizsäcker Zur Theorie der Kernmassen , 1935 .

[13]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[14]  Emily A. Carter,et al.  Linear-scaling parallel algorithms for the first principles treatment of metals ✩ , 2000 .

[15]  Chen Huang,et al.  Introducing PROFESS 2.0: A parallelized, fully linear scaling program for orbital-free density functional theory calculations , 2010, Comput. Phys. Commun..

[16]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[17]  G. V. Chester,et al.  Solid State Physics , 2000 .

[18]  C. Brooks Computer simulation of liquids , 1989 .

[19]  William W. Hager,et al.  A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..

[20]  Emily A. Carter,et al.  Introducing PROFESS: A new program for orbital-free density functional theory calculations , 2008, Comput. Phys. Commun..

[21]  L. H. Thomas The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  Chen Huang,et al.  Orbital-free density functional theory simulations of dislocations in aluminum , 2009 .

[23]  Emily A. Carter,et al.  Nonlocal orbital-free kinetic energy density functional for semiconductors , 2010 .

[24]  Linda Hung,et al.  Accurate simulations of metals at the mesoscale: Explicit treatment of 1 million atoms with quantum mechanics , 2009 .