Determining soil moisture and sediment availability at White Sands Dune Field, New Mexico, from apparent thermal inertia data

[1] Determinations of soil moisture and sediment availability in arid regions are important indicators of local climate variability and the potential for future dust storm events. Data from the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer were used to derive the relationships among potential soil erosion, soil moisture, and thermal inertia (TI) at the spatial scale of aeolian landforms for the White Sands Dune Field between May 2000 and March 2008. Land surface apparent thermal inertia (ATI) data were used to derive an approximation of actual TI in order to estimate the wind threshold velocity ratio (WTR). The WTR is a ratio of the wind velocity thresholds at which soil erosion occurs for wet soil versus dry soil. The ASTER‐derived soil moisture retrievals and the changes through time at White Sands were interpreted to be driven primarily by precipitation, but the presence of a perched groundwater table may also influence certain areas. The sediment availability of dunes, active playa surfaces and the margin of the alluvial fans to the west were determined to be consistently higher than the surrounding area. The sediment availability can be primarily explained by precipitation events and the number of dry days prior to the data acquisition. Other factors such as vegetation and the amount of surface crusting may also influence soil mobility, but these were not measured in the field. This approach showed the highest modeled sediment availability values just days prior to the largest dust emission event at White Sands in decades. Such an approach could be extended to a global monitoring technique for arid land systems that are prone to dust storms and for other regional land surface studies in the Sahara.

[1]  S. Scheidt,et al.  Changes in active eolian sand at northern Coachella Valley, California , 2009 .

[2]  Richard P. Langford,et al.  Groundwater salinity as a control on development of eolian landscape: An example from the White Sands of New Mexico , 2009 .

[3]  D. Entekhabi,et al.  Soil Moisture Active/Passive (SMAP) Mission concept , 2008, Optical Engineering + Applications.

[4]  Nicholas Lancaster,et al.  Surface-sediment dynamics in a dust source from spaceborne multispectral thermal infrared data , 2008 .

[5]  Hirokazu Yamamoto,et al.  Inter-Comparison of ASTER and MODIS Surface Reflectance and Vegetation Index Products for Synergistic Applications to Natural Resource Monitoring , 2008, Sensors.

[6]  Michael S. Ramsey,et al.  Radiometric normalization and image mosaic generation of ASTER thermal infrared data: An application to extensive sand sheets and dune fields , 2008 .

[7]  Yasushi Yamaguchi,et al.  Reducing the Discrepancy Between ASTER and MODIS Land Surface Temperature Products , 2007, Sensors.

[8]  P. F. Chavez,et al.  Dust emission from wet and dry playas in the Mojave Desert, USA , 2007 .

[9]  Yong Xue,et al.  Soil moisture retrieval from MODIS data in Northern China Plain using thermal inertia model , 2007 .

[10]  Yong Xue,et al.  Oil spill detection from thermal anomaly using ASTER data in Yinggehai of Hainan, China , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[11]  Ashok K. Singhvi,et al.  White Sands Dune Field, New Mexico: Age, dune dynamics and recent accumulations , 2007 .

[12]  W. Calvin,et al.  Detection of geothermal anomalies using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA , 2007 .

[13]  M. Reheis A 16-year record of eolian dust in Southern Nevada and California, USA: Controls on dust generation and accumulation , 2006 .

[14]  J. Baldasano,et al.  Interactive dust‐radiation modeling: A step to improve weather forecasts , 2006 .

[15]  V. Cachorro,et al.  A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling , 2006 .

[16]  Thomas J. Jackson,et al.  Soil moisture mapping and AMSR-E validation using the PSR in SMEX02 , 2006 .

[17]  S. Hu,et al.  Study on Evapotranspiration Estimation of Small Drainage based on ASTER Data , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[18]  Liu Zhenhua,et al.  Research on the method for retrieving soil moisture using thermal inertia model , 2006 .

[19]  T. J. Majumdar,et al.  Study of high-resolution thermal inertia over western India oil fields using ASTER data , 2006 .

[20]  Akira Iwasaki,et al.  Validation of a crosstalk correction algorithm for ASTER/SWIR , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Hiroyuki Fujisada,et al.  ASTER DEM performance , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Jianping Guo,et al.  Soil moisture retrieval from MODIS data in northern china plain using thermal inertia model (SoA-TI) , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[23]  Zheng Niu,et al.  Evaluating soil moisture status in China using the temperature–vegetation dryness index (TVDI) , 2004 .

[24]  David C. Pieri,et al.  ASTER watches the world's volcanoes: a new paradigm for volcanological observations from orbit , 2004 .

[25]  T. Schmugge,et al.  Comparison of land surface emissivity and radiometric temperature derived from MODIS and ASTER sensors , 2004 .

[26]  Akira Iwasaki,et al.  Improvement of ASTER/SWIR crosstalk correction , 2004, SPIE Remote Sensing.

[27]  Kenta Ogawa,et al.  Relations between albedos and emissivities from MODIS and ASTER data over North African Desert , 2003 .

[28]  Huug van den Dool,et al.  Performance and analysis of the constructed analogue method applied to U.S. soil moisture over 1981-2001 , 2003 .

[29]  Wim Cornelis,et al.  The effect of surface moisture on the entrainment of dune sand by wind: an evaluation of selected models , 2003 .

[30]  T. Jackson,et al.  Soil moisture estimates from TRMM Microwave Imager observations over the Southern United States , 2003 .

[31]  Thomas J. Jackson,et al.  Soil moisture retrieval from AMSR-E , 2003, IEEE Trans. Geosci. Remote. Sens..

[32]  Zhilin Zhu,et al.  A remote sensing model for monitoring soil evaporation based on differential thermal inertia and its validation , 2003, Science in China Series D Earth Sciences.

[33]  D. Roy,et al.  Achieving sub-pixel geolocation accuracy in support of MODIS land science , 2002 .

[34]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[35]  M. Palecki,et al.  THE DROUGHT MONITOR , 2002 .

[36]  Akira Iwasaki,et al.  Enhancement of spectral separation performance for ASTER/SWIR , 2002, SPIE Optics + Photonics.

[37]  Akira Iwasaki,et al.  ASTER geometric performance , 2001, IEEE Transactions on Geoscience and Remote Sensing.

[38]  G. Kallos,et al.  A model for prediction of desert dust cycle in the atmosphere , 2001 .

[39]  S. Liang Narrowband to broadband conversions of land surface albedo I Algorithms , 2001 .

[40]  M. Abrams The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform , 2000 .

[41]  N. Lancaster,et al.  Aeolian system sediment state: theory and Mojave Desert Kelso dune field example , 1999 .

[42]  G. Bergametti,et al.  Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas , 1999 .

[43]  Yasushi Yamaguchi,et al.  Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 2003, SPIE Remote Sensing.

[44]  Kurtis J. Thome,et al.  Atmospheric correction of ASTER , 1998, IEEE Trans. Geosci. Remote. Sens..

[45]  C. Duffy,et al.  Density-driven groundwater flow in closed desert basins: field investigations and numerical experiments , 1997 .

[46]  Thomas J. Jackson,et al.  Soil moisture estimation using special satellite microwave/imager satellite data over a grassland region , 1997 .

[47]  Li Zhenshan,et al.  Wind tunnel test of the influence of moisture on the erodibility of loessial sandy loam soils by wind , 1996 .

[48]  Huug van den Dool,et al.  Analysis of model-calculated soil moisture over the United States (1931-1993) and applications to long-range temperature forecasts , 1996 .

[49]  Yong Xue,et al.  Thermal inertia determination from space— a tutorial review , 1996 .

[50]  D. W. Fryrear,et al.  THRESHOLD WIND VELOCITIES OF WET SOILS AS AFFECTED BY WIND BLOWN SAND , 1995 .

[51]  B. Marticorena,et al.  Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme , 1995 .

[52]  Yong Xue,et al.  Advanced thermal inertia modelling , 1995 .

[53]  Yaping Shao,et al.  Effect of Saltation Bombardment on the Entrainment of Dust by Wind , 1993 .

[54]  T. Jackson,et al.  III. Measuring surface soil moisture using passive microwave remote sensing , 1993 .

[55]  Anne B. Kahle,et al.  Separation of temperature and emittance in remotely sensed radiance measurements , 1992 .

[56]  Uni,et al.  Eolian Event Stratigraphy--A Conceptual Framework , 1991 .

[57]  D. Sherman Evaluation of aeolian sand transport equations using intertidal‐zone measurements, Saunton Sands, England , 1990 .

[58]  William G. Nickling,et al.  A THEORETICAL AND WIND TUNNEL INVESTIGATION OF THE EFFECT OF CAPILLARY WATER ON THE ENTRAINMENT OF SEDIMENT BY WIND , 1989 .

[59]  J. C. Price On the analysis of thermal infrared imagery: The limited utility of apparent thermal inertia , 1985 .

[60]  K. Horikawa,et al.  SAND TRANSPORT BY WIND ON A WET SAND SURFACE , 1984 .

[61]  J. C. Price The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation , 1980 .

[62]  D. Pratt,et al.  The thermal inertia approach to mapping of soil moisture and geology , 1979 .

[63]  A. Gillespie,et al.  CONSTRUCTION AND INTERPRETATION OF A DIGITAL THERMAL INERTIA IMAGE , 1977 .

[64]  J. C. Price Thermal inertia mapping: A new view of the Earth , 1977 .

[65]  Anne B. Kahle,et al.  A simple thermal model of the Earth's surface for geologic mapping by remote sensing , 1977 .

[66]  Edwin D. McKee,et al.  STRUCTURES OF DUNES AT WHITE SANDS NATIONAL MONUMENT, NEW MEXICO (AND A COMPARISON WITH STRUCTURES OF DUNES FROM OTHER SELECTED AREAS)1 , 1966 .

[67]  A. Langer,et al.  Mojave Playa crusts; physical properties and mineral content , 1966 .

[68]  W. S. Chepil,et al.  Influence of Moisture on Erodibility of Soil by Wind1 , 1956 .

[69]  C. Neuman,et al.  Aeolian Sediment Transport , 2009 .

[70]  J. Anthony,et al.  Geomorphology of Desert Environments || Aeolian Sediment Transport , 2009 .

[71]  S. Scheidt,et al.  Thermal Remote Sensing of Sand Transport Systems , 2008 .

[72]  F. V. D. Bergh,et al.  Comparison of data-driven and model-driven approaches to brightness temperature diurnal cycle interpolation , 2006 .

[73]  Richard P. Langford,et al.  The Holocene history of the White Sands dune field and influences on eolian deflation and playa lakes , 2003 .

[74]  F. Göttsche,et al.  Influence of Land Surface Parameters and Atmosphere on METEOSAT Brightness Temperatures and Generation of Land Surface Temperature Maps by Temporally and Spatially Interpolating Atmospheric Correction , 2001 .

[75]  Raupach,et al.  A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region , 1996 .

[76]  M. Crabaugh Controls on accumulation in modern and ancient wet eolian systems , 1994 .

[77]  M. Rosen The importance of groundwater in playas: A review of playa classifications and the sedimentology and hydrology of playas , 1994 .

[78]  G. Kocurek,et al.  Eolian sequence stratigraphy - a conceptual framework , 1993 .

[79]  A. Goetz,et al.  Thermal inertia imaging: A new geologic mapping tool , 1976 .

[80]  P. Belly,et al.  Sand movement by wind , 1964 .