Solving multiobjective clustering using an immune-inspired algorithm

In this study, we introduced a novel multiobjective optimization algorithm, Nondominated Neighbor Immune Algorithm (NNIA), to solve the multiobjective clustering problems. NNIA solves multiobjective optimization problems by using a nondominated neighbor-based selection technique, an immune inspired operator, two heuristic search operators and elitism. The main novelty of NNIA is that the selection technique only selects minority isolated nondominated individuals in current population to clone proportionally to the crowding-distance values, recombine and mutate. As a result, NNIA pays more attention to the less-crowded regions in the current trade-off front. The experimental results on seven artificial data sets with different manifold structure and six real-world data sets show that the NNIA is an effective algorithm for solving multiobjective clustering problems, and the NNIA based multiobjective clustering technique is a cogent unsupervised learning method.

[1]  L.N. de Castro,et al.  An artificial immune network for multimodal function optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[2]  James C. Bezdek,et al.  Clustering with a genetically optimized approach , 1999, IEEE Trans. Evol. Comput..

[3]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[4]  Vincenzo Cutello,et al.  Exploring the Capability of Immune Algorithms: A Characterization of Hypermutation Operators , 2004, ICARIS.

[5]  Chris H. Q. Ding,et al.  K-nearest-neighbor consistency in data clustering: incorporating local information into global optimization , 2004, SAC '04.

[6]  Jing Liu,et al.  An organizational coevolutionary algorithm for classification , 2006, IEEE Trans. Evol. Comput..

[7]  Joshua D. Knowles,et al.  An Evolutionary Approach to Multiobjective Clustering , 2007, IEEE Transactions on Evolutionary Computation.

[8]  Douglas B. Kell,et al.  Computational cluster validation in post-genomic data analysis , 2005, Bioinform..

[9]  Carlos A. Coello Coello,et al.  Solving Multiobjective Optimization Problems Using an Artificial Immune System , 2005, Genetic Programming and Evolvable Machines.

[10]  Sanyou Zeng,et al.  An Orthogonal Multi-objective Evolutionary Algorithm for Multi-objective Optimization Problems with Constraints , 2004, Evolutionary Computation.

[11]  Simon M. Garrett,et al.  How Do We Evaluate Artificial Immune Systems? , 2005, Evolutionary Computation.

[12]  Xin Yao,et al.  A new evolutionary system for evolving artificial neural networks , 1997, IEEE Trans. Neural Networks.

[13]  Simon M. Garrett Parameter-free, adaptive clonal selection , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[14]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[15]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[16]  Fernando José Von Zuben,et al.  Learning and optimization using the clonal selection principle , 2002, IEEE Trans. Evol. Comput..

[17]  Vincenzo Cutello,et al.  Clonal Selection Algorithms: A Comparative Case Study Using Effective Mutation Potentials , 2005, ICARIS.

[18]  Bo Zhang,et al.  Application of Neural Network Based on Particle Swarm Optimization in Short-Term Load Forecasting , 2006, ISNN.

[19]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[20]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[21]  Ujjwal Maulik,et al.  Genetic algorithm-based clustering technique , 2000, Pattern Recognit..

[22]  Vincenzo Cutello,et al.  A Class of Pareto Archived Evolution Strategy Algorithms Using Immune Inspired Operators for Ab-Initio Protein Structure Prediction , 2005, EvoWorkshops.

[23]  Zhi-Hua Zhou,et al.  Supervised nonlinear dimensionality reduction for visualization and classification , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[24]  Fabio Freschi,et al.  Multiobjective Optimization by a Modified Artificial Immune System Algorithm , 2005, ICARIS.

[25]  Jonathan Timmis,et al.  Application Areas of AIS: The Past, The Present and The Future , 2005, ICARIS.

[26]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[27]  Zengqi Sun,et al.  A New Approach Belonging to EDAs: Quantum-Inspired Genetic Algorithm with Only One Chromosome , 2005, ICNC.

[28]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[29]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.