LPV system identification under noise corrupted scheduling and output signal observations

Most of the approaches available in the literature for the identification of Linear Parameter-Varying (LPV) systems rely on the assumption that only the measurements of the output signal are corrupted by the noise, while the observations of the scheduling variable are considered to be noise free. However, in practice, this turns out to be an unrealistic assumption in most of the cases, as the scheduling variable is often related to a measured signal and, thus, it is inherently affected by a measurement noise. In this paper, it is shown that neglecting the noise on the scheduling signal, which corresponds to an error-in-variables problem, can lead to a significant bias on the estimated parameters. Consequently, in order to overcome this corruptive phenomenon affecting practical use of data-driven LPV modeling, we present an identification scheme to compute a consistent estimate of LPV Input/Output (IO) models from noisy output and scheduling signal observations. A simulation example is provided to prove the effectiveness of the proposed methodology.

[1]  Roland Tóth,et al.  A bias-corrected estimator for nonlinear systems with output-error type model structures , 2014, Autom..

[2]  Carlo Novara,et al.  Direct Identification of Optimal SM-LPV Filters and Application to Vehicle Yaw Rate Estimation , 2011, IEEE Transactions on Control Systems Technology.

[3]  Alireza Karimi,et al.  On the Consistency of Certain Identification Methods for Linear Parameter Varying Systems , 2008 .

[4]  Hugues Garnier,et al.  Refined instrumental variable methods for identification of LPV Box-Jenkins models , 2010, Autom..

[5]  Dario Piga,et al.  Set-membership identification of input-output LPV models with uncertain time-varying parameters , 2011 .

[6]  Thierry Poinot,et al.  Continuous-Time Linear Parameter-Varying Identification of a Cross Flow Heat Exchanger: A Local Approach , 2011, IEEE Transactions on Control Systems Technology.

[7]  B. Ninness,et al.  System identification of linear parameter varying state-space models , 2011 .

[8]  Michel Verhaegen,et al.  Subspace identification of MIMO LPV systems using a periodic scheduling sequence , 2007, Autom..

[9]  Mario Sznaier,et al.  An LMI approach to model (in) validation of LPV systems , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[10]  Siep Weiland,et al.  Identification of low order parameter varying models for large scale systems , 2009 .

[11]  Torsten Söderström,et al.  Errors-in-variables methods in system identification , 2018, Autom..

[12]  Ian Postlethwaite,et al.  A linear parameter variant H∞ control design for an induction motor , 2002 .

[13]  L. del Re,et al.  Gain Scheduled $H_{\infty}$ Control for Air Path Systems of Diesel Engines Using LPV Techniques , 2007, IEEE Transactions on Control Systems Technology.

[14]  Bassam Bamieh,et al.  Identification of linear parameter varying models , 2002 .

[15]  Dario Piga,et al.  SM identification of IO LPV models with uncertain time-varying parameters , 2012 .

[16]  Roland Toth,et al.  Modeling and Identification of Linear Parameter-Varying Systems , 2010 .

[17]  Hossam Seddik Abbas,et al.  An instrumental variable technique for open-loop and closed-loop identification of input-output LPV models , 2009, 2009 European Control Conference (ECC).

[18]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[19]  G. Balas,et al.  Development of linear-parameter-varying models for aircraft , 2004 .

[20]  J. Aplevich,et al.  Lecture Notes in Control and Information Sciences , 1979 .

[21]  Michael Athans,et al.  Analysis of gain scheduled control for nonlinear plants , 1990 .

[22]  Seyed Mahdi Hashemi,et al.  Low-complexity linear parameter-varying modeling and control of a robotic manipulator , 2012 .

[23]  Wei Xing Zheng,et al.  Accuracy analysis of bias-eliminating least squares estimates for errors-in-variables systems , 2007, Autom..

[24]  Vincent Verdult,et al.  Kernel methods for subspace identification of multivariable LPV and bilinear systems , 2005, Autom..

[25]  T. Söderström,et al.  Instrumental variable methods for system identification , 1983 .

[26]  Fen Wu,et al.  Switching LPV control of an F-16 aircraft via controller state reset , 2006, IEEE Transactions on Control Systems Technology.

[27]  Matteo Corno,et al.  Design and Validation of a Gain-Scheduled Controller for the Electronic Throttle Body in Ride-by-Wire Racing Motorcycles , 2011, IEEE Transactions on Control Systems Technology.

[28]  Dario Piga,et al.  Set-membership LPV model identification of vehicle lateral dynamics , 2011, Autom..

[29]  Paulo J. Lopes dos Santos,et al.  Subspace identification of linear parameter-varying systems with innovation-type noise models driven by general inputs and a measurable white noise time-varying parameter vector , 2008, Int. J. Syst. Sci..

[30]  W. Zheng Transfer function estimation from noisy input and output data , 1998 .

[31]  Michel Verhaegen,et al.  Subspace identification of Bilinear and LPV systems for open- and closed-loop data , 2009, Autom..

[32]  Brett Ninness,et al.  Strong laws of large numbers under weak assumptions with application , 2000, IEEE Trans. Autom. Control..

[33]  Dario Piga,et al.  Aconvex relaxation approach to Set-membership identification of LPVsystems , 2013 .

[34]  Roland Tóth,et al.  Asymptotically optimal orthonormal basis functions for LPV system identification , 2009, Autom..