Framework for a portable gesture interface

Gesture recognition is a valuable extension for interaction with portable devices. This paper presents a framework for interaction by hand gestures using a head mounted camera system. The framework includes automatic activation using AdaBoost hand detection, tracking of chromatic and luminance color modes based on adaptive mean shift and pose recognition using template matching of the polar histogram. The system achieves 95% detection rate and 96% classification accuracy at real time processing, for a non-static camera setup and cluttered background

[1]  Lars Bretzner,et al.  Hand gesture recognition using multi-scale colour features, hierarchical models and particle filtering , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[2]  Gary Bradski,et al.  Computer Vision Face Tracking For Use in a Perceptual User Interface , 1998 .

[3]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[4]  Gary R. Bradski,et al.  Motion segmentation and pose recognition with motion history gradients , 2000, Proceedings Fifth IEEE Workshop on Applications of Computer Vision.

[5]  Paulo Menezes,et al.  Face tracking and hand gesture recognition for human-robot interaction , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[6]  Mathias Kölsch,et al.  Fast 2D Hand Tracking with Flocks of Features and Multi-Cue Integration , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[7]  Jitendra Malik,et al.  Learning a discriminative classifier using shape context distances , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[8]  Alex Pentland,et al.  A Wearable Computer Based American Sign Language Recognizer , 1997, SEMWEB.

[9]  Mathias Kölsch,et al.  Robust hand detection , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[10]  Yuntao Cui,et al.  Hand segmentation using learning-based prediction and verification for hand sign recognition , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Paul A. Beardsley,et al.  Computer Vision for Interactive Computer Graphics , 1998, IEEE Computer Graphics and Applications.

[12]  M. R. J. Kohler,et al.  Video Based Gesture Recognition for Human Computer Interaction , 1995 .

[13]  Matthew Turk,et al.  View-based interpretation of real-time optical flow for gesture recognition , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[14]  Björn Stenger,et al.  Hand Pose Estimation Using Hierarchical Detection , 2004, ECCV Workshop on HCI.

[15]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Ali H. Sayed,et al.  Robust finger tracking for wearable computer interfacing , 2001, PUI '01.

[17]  Richard Bowden,et al.  A boosted classifier tree for hand shape detection , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[18]  Yair Weiss,et al.  Learning object detection from a small number of examples: the importance of good features , 2004, CVPR 2004.

[19]  Katsuhiko Sakaue,et al.  The Hand Mouse: GMM hand-color classification and mean shift tracking , 2001, Proceedings IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems.