Semi-implicit integrations of perturbation equations for all-scale atmospheric dynamics

Abstract This paper presents a generalised perturbation form of the nonhydrostatic partial differential equations (PDEs) that govern dynamics of all-scale global atmospheric flows. There can be many alternative perturbation forms for any given system of the governing PDEs, depending on the assumed ambient state about which perturbations are taken and on subject preferences in the numerical model design. All such forms are mathematically equivalent, yet they have different implications for the design and accuracy of effective semi-implicit numerical integrators of the governing PDEs. Practical and relevant arguments are presented in favour of perturbation forms that maximise the degree of implicitness of the associated integrators. Two optional forms are implemented in the high-performance finite-volume module (IFS-FVM) for simulating global all-scale atmospheric flows Smolarkiewicz et al. (2016) [32] . Their relative performance is verified with a class of ambient states of reduced complexity. A series of numerical simulations of the planetary baroclinic instability assumes geostrophically balanced zonally uniform ambient flows with significant meridional and vertical shear and exemplifies accuracy gains enabled by the generalised perturbation approach. The newly developed semi-implicit integrators show the potential for numerically accurate separation of a background state from finite-amplitude perturbations of the global atmosphere and provide a base for further development.

[1]  Colin J. Cotter,et al.  Computational Modes and Grid Imprinting on Five Quasi-Uniform Spherical C Grids , 2012 .

[2]  R. Heikes,et al.  DCMIP2016: A Review of Non-hydrostatic Dynamical Core Design and Intercomparison of Participating Models , 2017 .

[3]  C. Gebhardt,et al.  The impact of downscaled initial condition perturbations on convective‐scale ensemble forecasts of precipitation , 2014 .

[4]  P. Smolarkiewicz,et al.  Solitary wave effects north of Strait of Messina , 2007 .

[5]  Christopher J. Subich Higher-order finite volume differential operators with selective upwinding on the icosahedral spherical grid , 2018, J. Comput. Phys..

[6]  Len G. Margolin,et al.  On Forward-in-Time Differencing for Fluids: an Eulerian/Semi-Lagrangian Non-Hydrostatic Model for Stratified Flows , 1997 .

[7]  Piotr K. Smolarkiewicz,et al.  Anelastic and Compressible Simulation of Moist Deep Convection , 2014 .

[8]  Paul Charbonneau,et al.  Magnetically Modulated Heat Transport in a Global Simulation of Solar Magneto-convection , 2017 .

[9]  Joanna Szmelter,et al.  An edge-based unstructured mesh discretisation in geospherical framework , 2010, J. Comput. Phys..

[10]  L. Margolin,et al.  A Class of Nonhydrostatic Global Models. , 2001 .

[11]  Christian Kühnlein,et al.  A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics , 2014, J. Comput. Phys..

[12]  Christian Kühnlein,et al.  An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics , 2017, J. Comput. Phys..

[13]  N. Wedi,et al.  Extending Gal-Chen and Somerville terrain-following coordinate transformation on time-dependent curvilinear boundaries , 2004 .

[14]  D. Williamson,et al.  A baroclinic instability test case for atmospheric model dynamical cores , 2006 .

[15]  Richard H. Miller,et al.  A horror story about integration methods , 1991 .

[16]  Christian Kühnlein,et al.  A finite-volume module for cloud-resolving simulations of global atmospheric flows , 2017, J. Comput. Phys..

[17]  J. Szmelter,et al.  A nonhydrostatic unstructured-mesh soundproof model for simulation of internal gravity waves , 2011 .

[18]  J. Prusa,et al.  An all-scale anelastic model for geophysical flows: dynamic grid deformation , 2003 .

[19]  Zhao Zhang,et al.  An unstructured-mesh atmospheric model for nonhydrostatic dynamics: Towards optimal mesh resolution , 2015, J. Comput. Phys..

[20]  D. Durran Improving the Anelastic Approximation , 1989 .

[21]  Saulo R. M. Barros,et al.  Analysis of grid imprinting on geodesic spherical icosahedral grids , 2013, J. Comput. Phys..

[22]  Piotr K. Smolarkiewicz,et al.  Characteristics of large-scale orographic precipitation: Evaluation of linear model in idealized problems , 2007 .

[23]  Nils Wedi,et al.  Direct Numerical Simulation of the Plumb–McEwan Laboratory Analog of the QBO , 2006 .

[24]  P. Smolarkiewicz,et al.  Conservative integrals of adiabatic Durran's equations , 2008 .

[25]  D. Durran,et al.  A Compressible Model for the Simulation of Moist Mountain Waves , 1983 .

[26]  Mats Hamrud,et al.  A finite-volume module for simulating global all-scale atmospheric flows , 2016, J. Comput. Phys..

[27]  Piotr K. Smolarkiewicz,et al.  Anelastic and Compressible Simulation of Moist Dynamics at Planetary Scales , 2015 .

[28]  J. Prusa,et al.  EULAG, a computational model for multiscale flows , 2008 .

[29]  Piotr K. Smolarkiewicz,et al.  Building resolving large-eddy simulations and comparison with wind tunnel experiments , 2007, J. Comput. Phys..

[30]  R. Rotunno,et al.  Mesoscale Predictability of Moist Baroclinic Waves: Convection-Permitting Experiments and Multistage Error Growth Dynamics , 2007 .

[31]  Piotr K. Smolarkiewicz,et al.  Multidimensional positive definite advection transport algorithm: an overview , 2006 .

[32]  Franco Molteni,et al.  Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors , 2013, Climate Dynamics.

[33]  Paul Charbonneau,et al.  ON THE MODE OF DYNAMO ACTION IN A GLOBAL LARGE-EDDY SIMULATION OF SOLAR CONVECTION , 2011 .

[34]  R. Hemler,et al.  A Scale Analysis of Deep Moist Convection and Some Related Numerical Calculations , 1982 .

[35]  Paul Charbonneau,et al.  EULAG, a computational model for multiscale flows: An MHD extension , 2013, J. Comput. Phys..

[36]  Christian Kühnlein,et al.  Modelling atmospheric flows with adaptive moving meshes , 2012, J. Comput. Phys..

[37]  Nils Wedi,et al.  A framework for testing global non‐hydrostatic models , 2009 .

[38]  Nils Wedi,et al.  A Nonlinear Perspective on the Dynamics of the MJO: Idealized Large-Eddy Simulations , 2010 .

[39]  J. Szmelter,et al.  MPDATA: An edge-based unstructured-grid formulation , 2005 .

[40]  Christiane Jablonowski,et al.  A proposed baroclinic wave test case for deep‐ and shallow‐atmosphere dynamical cores , 2014 .

[41]  Piotr K. Smolarkiewicz,et al.  On physical realizability and uncertainty of numerical solutions , 2005 .