Explicit Capacity Approaching Coding for Interactive Communication

We show an <italic>explicit</italic> (that is, efficient and deterministic) capacity approaching interactive coding scheme that simulates any interactive protocol under random errors with nearly optimal communication rate. Specifically, over the binary symmetric channel with crossover probability <inline-formula> <tex-math notation="LaTeX">$\epsilon $ </tex-math></inline-formula>, our coding scheme achieves a communication rate of <inline-formula> <tex-math notation="LaTeX">$1 - O(\sqrt {H({\epsilon })})$ </tex-math></inline-formula>, together with negligible <inline-formula> <tex-math notation="LaTeX">$\exp (-\Omega (\epsilon ^{4}\,\,n/\log n))$ </tex-math></inline-formula> failure probability (over the randomness of the channel). A rate of <inline-formula> <tex-math notation="LaTeX">$1 - \tilde \Theta (\sqrt {H({\epsilon })})$ </tex-math></inline-formula> is likely asymptotically optimal as a result of Kol and Raz (2013) suggests. Prior to this paper, such a communication rate was achievable only using <italic>randomized</italic> coding schemes [Kol and Raz (2013); Hauepler (2014)].

[1]  Moni Naor,et al.  Small-Bias Probability Spaces: Efficient Constructions and Applications , 1993, SIAM J. Comput..

[2]  Noga Alon,et al.  Reliable communication over highly connected noisy networks , 2016, Distributed Computing.

[3]  Mark Braverman,et al.  Constant-Rate Coding for Multiparty Interactive Communication Is Impossible , 2017, J. ACM.

[4]  Mark Braverman,et al.  Toward Coding for Maximum Errors in Interactive Communication , 2011, IEEE Transactions on Information Theory.

[5]  Amit Sahai,et al.  Adaptive protocols for interactive communication , 2013, 2016 IEEE International Symposium on Information Theory (ISIT).

[6]  G. David Forney,et al.  Concatenated codes , 2009, Scholarpedia.

[7]  Mark Braverman,et al.  Coding for Interactive Communication Correcting Insertions and Deletions , 2017, IEEE Trans. Inf. Theory.

[8]  Andrew Chi-Chih Yao,et al.  Some complexity questions related to distributive computing(Preliminary Report) , 1979, STOC.

[9]  Madhu Sudan,et al.  Optimal error rates for interactive coding I: adaptivity and other settings , 2013, STOC.

[10]  Rafail Ostrovsky,et al.  Optimal Coding for Streaming Authentication and Interactive Communication , 2015, IEEE Transactions on Information Theory.

[11]  Leonard J. Schulman,et al.  Communication on noisy channels: a coding theorem for computation , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[12]  Leonard J. Schulman,et al.  Deterministic coding for interactive communication , 1993, STOC.

[13]  Bernhard Haeupler,et al.  Synchronization Strings: Channel Simulations and Interactive Coding for Insertions and Deletions , 2017, ICALP.

[14]  E. Gilbert A comparison of signalling alphabets , 1952 .

[15]  Ran Gelles,et al.  Coding for Interactive Communication: A Survey , 2017, Found. Trends Theor. Comput. Sci..

[16]  Mark Braverman,et al.  List and Unique Coding for Interactive Communication in the Presence of Adversarial Noise , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[17]  Mark Braverman,et al.  Coding for Interactive Communication Correcting Insertions and Deletions , 2017, IEEE Transactions on Information Theory.

[18]  Ameya Velingker,et al.  Bridging the Capacity Gap Between Interactive and One-Way Communication , 2017, SODA.

[19]  Amit Sahai,et al.  Efficient Coding for Interactive Communication , 2014, IEEE Transactions on Information Theory.

[20]  Leonard J. Schulman Coding for interactive communication , 1996, IEEE Trans. Inf. Theory.

[21]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[22]  Ran Gelles,et al.  Making Asynchronous Distributed Computations Robust to Channel Noise , 2018, ITCS.

[23]  Noga Alon,et al.  Simple Construction of Almost k-wise Independent Random Variables , 1992, Random Struct. Algorithms.

[24]  Bernhard Haeupler,et al.  Interactive Channel Capacity Revisited , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[25]  Yael Tauman Kalai,et al.  Fast Interactive Coding against Adversarial Noise , 2014, JACM.

[26]  Ran Raz,et al.  Interactive channel capacity , 2013, STOC '13.

[27]  Yael Tauman Kalai,et al.  Constant-Rate Interactive Coding Is Impossible, Even in Constant-Degree Networks , 2019, IEEE Trans. Inf. Theory.

[28]  Leonard J. Schulman,et al.  Explicit binary tree codes with polylogarithmic size alphabet , 2018, Electron. Colloquium Comput. Complex..

[29]  Mark Braverman,et al.  Towards deterministic tree code constructions , 2012, ITCS '12.

[30]  Bernhard Haeupler,et al.  Synchronization strings: codes for insertions and deletions approaching the Singleton bound , 2017, STOC.

[31]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[32]  Uriel Feige,et al.  Finding OR in a noisy broadcast network , 2000, Inf. Process. Lett..

[33]  Bernhard Haeupler,et al.  Optimal Error Rates for Interactive Coding II: Efficiency and List Decoding , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[34]  F. Moore,et al.  Polynomial Codes Over Certain Finite Fields , 2017 .