Online Recommender System for Radio Station Hosting

We describe a new recommender system for the Russian interactive radio network FMhost. The underlying model combines collaborative and user-based approaches. The system extracts information from tags of listened tracks for matching user and radio station profiles and follows an adaptive online learning strategy based on user history. We also provide some basic examples and describe the quality of service evaluation methodology.

[1]  Òscar Celma,et al.  Music Recommendation and Discovery - The Long Tail, Long Fail, and Long Play in the Digital Music Space , 2010 .

[2]  Peter Knees,et al.  Towards Semantic Music Information Extraction from the Web Using Rule Patterns and Supervised Learning , 2011 .

[3]  Dmitry Bogdanov,et al.  How Much Metadata Do We Need in Music Recommendation? A Subjective Evaluation Using Preference Sets , 2011, ISMIR.

[4]  Ian Knopke The Importance of Service and Genre in Recommendations for Online Radio and Television Programmes , 2011 .

[5]  David F. Gleich,et al.  The World of Music: SDP layout of high dimensional data , 2005 .

[6]  Leonid Zhukov,et al.  The World of Music : User Ratings ; Spectral and Spherical Embeddings ; Map Projections , 2006 .

[7]  Simon Dixon,et al.  Music Discovery with Social Networks , 2011 .

[8]  György Fazekas,et al.  Music recommendation for music learning: Hotttabs, a multimedia guitar tutor , 2011 .

[9]  Proceedings of the 12th International Society for Music Information Retrieval Conference, ISMIR 2011, Miami, Florida, USA, October 24-28, 2011 , 2011, ISMIR.

[10]  Paul Lamere,et al.  Workshop report: WOMRAD 2010 , 2010, RecSys '10.

[11]  Sankar K. Pal,et al.  Perception and Machine Intelligence , 2012, Lecture Notes in Computer Science.

[12]  Carlo Strapparava,et al.  Adaptive Hypermedia and Adaptive Web-Based Systems, 5th International Conference, AH 2008, Hannover, Germany, July 29 - August 1, 2008. Proceedings , 2008, AH.

[13]  Sergei O. Kuznetsov,et al.  Concept-based Recommendations for Internet Advertisement , 2009, ArXiv.

[14]  Angelo Susi,et al.  Collaborative Radio Community , 2002, AH.

[15]  Panagiotis Symeonidis,et al.  MusicBox: Personalized Music Recommendation Based on Cubic Analysis of Social Tags , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[16]  Paul Lamere,et al.  WOMRAD: 2nd workshop on music recommendation and discovery , 2011, RecSys '11.

[17]  Guoyin Wang,et al.  Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing , 2013, Lecture Notes in Computer Science.

[18]  Mitsunori Ogihara,et al.  NextOne Player: A Music Recommendation System Based on User Behavior , 2011, ISMIR.

[19]  Yehuda Koren,et al.  Yahoo! music recommendations: modeling music ratings with temporal dynamics and item taxonomy , 2011, RecSys '11.

[20]  Panagiotis Symeonidis,et al.  Ternary Semantic Analysis of Social Tags for Personalized Music Recommendation , 2008, ISMIR.

[21]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[22]  Paul Lamere,et al.  Music recommendation and discovery revisited , 2011, RecSys '11.

[23]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[24]  Leonid Zhukov,et al.  From Triconcepts to Triclusters , 2011, RSFDGrC.

[25]  Jonas Poelmans,et al.  A New Cross-Validation Technique to Evaluate Quality of Recommender Systems , 2012, PerMIn.

[26]  İpek Tatlı,et al.  Using Semantic Relations in Context-based Music Recommendations , 2011 .

[27]  Jonas Poelmans,et al.  Recommender System Based on Algorithm of Bicluster Analysis RecBi , 2012, ArXiv.

[28]  Jakob Abeßer,et al.  Music Search and Recommendation , 2009, Handbook of Multimedia for Digital Entertainment and Arts.

[29]  David J. Weiss,et al.  SMARTS and SMARTER: Improved Simple Methods for Multiattribute Utility Measurement , 2008 .

[30]  Andreas Butz,et al.  AudioRadar: A Metaphorical Visualization for the Navigation of Large Music Collections , 2006, Smart Graphics.