Chromatin Domains: The Unit of Chromosome Organization.

[1]  Theodor Boveri,et al.  Die Blastomerenkerne von Ascaris Megalocephala und die Theorie der Chromosomenindividualität , 1909 .

[2]  M. Levi,et al.  Replicon clusters may form structurally stable complexes of chromatin and chromosomes. , 1994, Journal of cell science.

[3]  Angus I. Lamond,et al.  Spatial Organization of Large-Scale Chromatin Domains in the Nucleus: A Magnified View of Single Chromosome Territories , 1997, The Journal of cell biology.

[4]  Ronald Berezney,et al.  Spatial and Temporal Dynamics of DNA Replication Sites in Mammalian Cells , 1998, The Journal of cell biology.

[5]  Ana Pombo,et al.  Replicon Clusters Are Stable Units of Chromosome Structure: Evidence That Nuclear Organization Contributes to the Efficient Activation and Propagation of S Phase in Human Cells , 1998, The Journal of cell biology.

[6]  K. Nasmyth THE GENOME : Joining , Resolving , and Separating Sister Chromatids During Mitosis and Meiosis , 2006 .

[7]  J. Dekker,et al.  Capturing Chromosome Conformation , 2002, Science.

[8]  H. Aburatani,et al.  Cohesin mediates transcriptional insulation by CCCTC-binding factor , 2008, Nature.

[9]  Z. Weng,et al.  The Insulator Binding Protein CTCF Positions 20 Nucleosomes around Its Binding Sites across the Human Genome , 2008, PLoS genetics.

[10]  Stephan Sauer,et al.  Cohesins Functionally Associate with CTCF on Mammalian Chromosome Arms , 2008, Cell.

[11]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[12]  E. Schierenberg,et al.  Loss of the insulator protein CTCF during nematode evolution , 2009, BMC Molecular Biology.

[13]  David A. Orlando,et al.  Mediator and Cohesin Connect Gene Expression and Chromatin Architecture , 2010, Nature.

[14]  N. D. Clarke,et al.  A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity , 2010, Nature.

[15]  T. Cremer,et al.  Chromosome territories. , 2010, Cold Spring Harbor perspectives in biology.

[16]  Steven M. Johnson,et al.  Determinants of nucleosome organization in primary human cells , 2011, Nature.

[17]  Michael Schubert,et al.  Short nucleosome repeats impose rotational modulations on chromatin fibre folding , 2012, The EMBO journal.

[18]  A. Tanay,et al.  Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome , 2012, Cell.

[19]  E. Schierenberg,et al.  The chromatin insulator CTCF and the emergence of metazoan diversity , 2012, Proceedings of the National Academy of Sciences.

[20]  Mario Nicodemi,et al.  Complexity of chromatin folding is captured by the strings and binders switch model , 2012, Proceedings of the National Academy of Sciences.

[21]  John F. Marko,et al.  Self-organization of domain structures by DNA-loop-extruding enzymes , 2012, Nucleic acids research.

[22]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[23]  W. D. Laat,et al.  A Decade of 3c Technologies: Insights into Nuclear Organization References , 2022 .

[24]  Raymond K. Auerbach,et al.  Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation , 2012, Cell.

[25]  Lee E. Edsall,et al.  A map of the cis-regulatory sequences in the mouse genome , 2012, Nature.

[26]  V. Corces,et al.  Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains , 2012, Genome research.

[27]  Daniel J. Gaffney,et al.  Controls of Nucleosome Positioning in the Human Genome , 2012, PLoS genetics.

[28]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[29]  Zhaohui S. Qin,et al.  Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. , 2012, Molecular cell.

[30]  J. Dekker,et al.  The long-range interaction landscape of gene promoters , 2012, Nature.

[31]  Yan Li,et al.  A high-resolution map of three-dimensional chromatin interactome in human cells , 2013, Nature.

[32]  Wei Zhang,et al.  Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR/Cas System , 2014, Cell.

[33]  W. Sung,et al.  Chromatin connectivity maps reveal dynamic promoter–enhancer long-range associations , 2013, Nature.

[34]  Jesse R. Dixon,et al.  Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells , 2013, Proceedings of the National Academy of Sciences.

[35]  Jennifer E. Phillips-Cremins,et al.  Architectural Protein Subclasses Shape 3D Organization of Genomes during Lineage Commitment , 2013, Cell.

[36]  Robert Patro,et al.  Identification of alternative topological domains in chromatin , 2014, Algorithms for Molecular Biology.

[37]  A. Tanay,et al.  Single cell Hi-C reveals cell-to-cell variability in chromosome structure , 2013, Nature.

[38]  J. Keith Joung,et al.  Interactome Maps of Mouse Gene Regulatory Domains Reveal Basic Principles of Transcriptional Regulation , 2013, Cell.

[39]  D. Duboule,et al.  Topology of mammalian developmental enhancers and their regulatory landscapes , 2013, Nature.

[40]  S. Gabriel,et al.  Pan-cancer patterns of somatic copy-number alteration , 2013, Nature Genetics.

[41]  Job Dekker,et al.  Organization of the Mitotic Chromosome , 2013, Science.

[42]  Jennifer E. Phillips-Cremins,et al.  Chromatin insulators: linking genome organization to cellular function. , 2013, Molecular cell.

[43]  Boris Lenhard,et al.  Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments , 2013, Genome research.

[44]  G. Schroth,et al.  Cohesin-mediated interactions organize chromosomal domain architecture , 2013, The EMBO journal.

[45]  B. Ren,et al.  The 3D genome in transcriptional regulation and pluripotency. , 2014, Cell stem cell.

[46]  Yaojun Zhang,et al.  3D Trajectories Adopted by Coding and Regulatory DNA Elements: First-Passage Times for Genomic Interactions , 2014, Cell.

[47]  Gary D Bader,et al.  Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma , 2014, Nature.

[48]  George M. Church,et al.  Highly Multiplexed Subcellular RNA Sequencing in Situ , 2014, Science.

[49]  Leonid A. Mirny,et al.  Chromatin Loops as Allosteric Modulators of Enhancer-Promoter Interactions , 2014, bioRxiv.

[50]  J. Dekker,et al.  Predictive Polymer Modeling Reveals Coupled Fluctuations in Chromosome Conformation and Transcription , 2014, Cell.

[51]  Job Dekker,et al.  Two ways to fold the genome during the cell cycle: insights obtained with chromosome conformation capture , 2014, Epigenetics & Chromatin.

[52]  L. Ettwiller,et al.  Functional and topological characteristics of mammalian regulatory domains , 2014, Genome research.

[53]  Jill M Dowen,et al.  Control of Cell Identity Genes Occurs in Insulated Neighborhoods in Mammalian Chromosomes , 2014, Cell.

[54]  Zhaohui S. Qin,et al.  Insulator function and topological domain border strength scale with architectural protein occupancy , 2014, Genome Biology.

[55]  Yanli Wang,et al.  Topologically associating domains are stable units of replication-timing regulation , 2014, Nature.

[56]  De-Pei Liu,et al.  CTCF Controls HOXA Cluster Silencing and Mediates PRC2-Repressive Higher-Order Chromatin Structure in NT2/D1 Cells , 2014, Molecular and Cellular Biology.

[57]  Britta A. M. Bouwman,et al.  A Single Oncogenic Enhancer Rearrangement Causes Concomitant EVI1 and GATA2 Deregulation in Leukemia , 2014, Cell.

[58]  Timur Zhiyentayev,et al.  Single-cell in situ RNA profiling by sequential hybridization , 2014, Nature Methods.

[59]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[60]  Ronald D. Vale,et al.  A Protein-Tagging System for Signal Amplification in Gene Expression and Fluorescence Imaging , 2014, Cell.

[61]  Michael Q. Zhang,et al.  Genome-wide map of regulatory interactions in the human genome , 2014, Genome research.

[62]  Judith B. Zaugg,et al.  Genetic Control of Chromatin States in Humans Involves Local and Distal Chromosomal Interactions , 2015, Cell.

[63]  Pedro P. Rocha,et al.  CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation , 2015, Science.

[64]  A. Visel,et al.  Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions , 2015, Cell.

[65]  S. Scheres,et al.  How cryo-EM is revolutionizing structural biology. , 2015, Trends in biochemical sciences.

[66]  S. Hadjur,et al.  Genetic Tailors: CTCF and Cohesin Shape the Genome During Evolution. , 2015, Trends in genetics : TIG.

[67]  Peng Yin,et al.  Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes , 2015, Nature Communications.

[68]  Yaniv Lubling,et al.  Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell , 2015, Nature Protocols.

[69]  Giacomo Cavalli,et al.  The Role of Chromosome Domains in Shaping the Functional Genome , 2015, Cell.

[70]  J. Dekker,et al.  Condensin-Driven Remodeling of X-Chromosome Topology during Dosage Compensation , 2015, Nature.

[71]  J. Dekker,et al.  Structural and functional diversity of Topologically Associating Domains , 2015, FEBS letters.

[72]  Britta A. M. Bouwman,et al.  Transcription of Mammalian cis-Regulatory Elements Is Restrained by Actively Enforced Early Termination. , 2015, Molecular cell.

[73]  Jing Liang,et al.  Chromatin architecture reorganization during stem cell differentiation , 2015, Nature.

[74]  D. Odom,et al.  Comparative HiC Reveals that CTCF Underlies Evolution of Chromosomal Domain Architecture Graphical , 2015 .

[75]  Richard L. Frock,et al.  Chromosomal Loop Domains Direct the Recombination of Antigen Receptor Genes , 2015, Cell.

[76]  Dariusz M Plewczynski,et al.  CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription , 2015, Cell.

[77]  A. Pombo,et al.  Three-dimensional genome architecture: players and mechanisms , 2015, Nature Reviews Molecular Cell Biology.

[78]  O. Delaneau,et al.  Population Variation and Genetic Control of Modular Chromatin Architecture in Humans , 2015, Cell.

[79]  X. Zhuang,et al.  Spatially resolved, highly multiplexed RNA profiling in single cells , 2015, Science.

[80]  Neva C. Durand,et al.  Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes , 2015, Proceedings of the National Academy of Sciences.

[81]  Michael Q. Zhang,et al.  CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function , 2015, Cell.

[82]  Swneke D. Bailey,et al.  ZNF143 provides sequence specificity to secure chromatin interactions at gene promoters , 2015, Nature Communications.

[83]  L. Mirny,et al.  Formation of Chromosomal Domains in Interphase by Loop Extrusion , 2015, bioRxiv.

[84]  Juan Carlos Rivera-Mulia,et al.  Replicating Large Genomes: Divide and Conquer. , 2016, Molecular cell.

[85]  J. Rinn,et al.  "Cat's Cradling" the 3D Genome by the Act of LncRNA Transcription. , 2016, Molecular cell.

[86]  X. Zhou,et al.  TopDom: an efficient and deterministic method for identifying topological domains in genomes , 2015, Nucleic acids research.

[87]  Leonid A. Mirny,et al.  Super-resolution imaging reveals distinct chromatin folding for different epigenetic states , 2015, Nature.

[88]  Shawn M. Gillespie,et al.  Insulator dysfunction and oncogene activation in IDH mutant gliomas , 2015, Nature.

[89]  Sigal Shachar,et al.  3D Chromosome Regulatory Landscape of Human Pluripotent Cells. , 2016, Cell stem cell.

[90]  E. Watrin,et al.  Gene regulation and chromatin organization: relevance of cohesin mutations to human disease. , 2016, Current opinion in genetics & development.

[91]  S. Kosak,et al.  Differential contribution of cis-regulatory elements to higher order chromatin structure and expression of the CFTR locus , 2015, Nucleic acids research.

[92]  L. Mirny,et al.  The 3D Genome as Moderator of Chromosomal Communication , 2016, Cell.

[93]  Victor G Corces,et al.  The Three-dimensional Genome: Principles and Roles of Long-distance Interactions This Review Comes from a Themed Issue on Cell Nucleus Introduction: a Three-dimensional Genome Units of Organization , 2022 .

[94]  Rodolfo Ghirlando,et al.  CTCF: making the right connections , 2016, Genes & development.

[95]  Daniel S. Day,et al.  Activation of proto-oncogenes by disruption of chromosome neighborhoods , 2015, Science.