A unified approach to Fiedler-like pencils via strong block minimal bases pencils

The standard way of solving the polynomial eigenvalue problem associated with a matrix polynomial is to embed the matrix polynomial into a matrix pencil, transforming the problem into an equivalent generalized eigenvalue problem. Such pencils are known as linearizations. Many of the families of linearizations for matrix polynomials available in the literature are extensions of the so-called family of Fiedler pencils. These families are known as generalized Fiedler pencils, Fiedler pencils with repetition and generalized Fiedler pencils with repetition, or Fiedler-like pencils for simplicity. The goal of this work is to unify the Fiedler-like pencils approach with the more recent one based on strong block minimal bases pencils introduced in \cite{canonical}. To this end, we introduce a family of pencils that we have named extended block Kronecker pencils, whose members are, under some generic nonsingularity conditions, strong block minimal bases pencils, and show that, with the exception of the non proper generalized Fiedler pencils, all Fiedler-like pencils belong to this family modulo permutations. As a consequence of this result, we obtain a much simpler theory for Fiedler-like pencils than the one available so far. Moreover, we expect this unification to allow for further developments in the theory of Fiedler-like pencils such as global or local backward error analyses and eigenvalue conditioning analyses of polynomial eigenvalue problems solved via Fiedler-like linearizations.

[1]  S. Furtado,et al.  Structured strong linearizations from Fiedler pencils with repetition I , 2014 .

[2]  D. Steven Mackey,et al.  Linearizations of matrix polynomials in Bernstein bases , 2016 .

[3]  Vanni Noferini,et al.  Fiedler-comrade and Fiedler-Chebyshev pencils , 2016, SIAM J. Matrix Anal. Appl..

[4]  E. Antoniou,et al.  A new family of companion forms of polynomial matrices , 2004 .

[5]  H. Faßbender,et al.  On vector spaces of linearizations for matrix polynomials in orthogonal bases , 2016, 1609.09493.

[6]  I. Gohberg,et al.  General theory of regular matrix polynomials and band Toeplitz operators , 1988 .

[7]  D. Steven Mackey,et al.  The continuing influence of Fiedler’s work on companion matrices , 2013 .

[8]  Nicholas J. Higham,et al.  Backward Error of Polynomial Eigenproblems Solved by Linearization , 2007, SIAM J. Matrix Anal. Appl..

[9]  H. Faßbender,et al.  Block Kronecker ansatz spaces for matrix polynomials , 2016 .

[10]  Alex Townsend,et al.  Vector Spaces of Linearizations for Matrix Polynomials: A Bivariate Polynomial Approach , 2016, SIAM J. Matrix Anal. Appl..

[11]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[12]  Nicholas J. Higham,et al.  Symmetric Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[13]  P. Dooren,et al.  The eigenstructure of an arbitrary polynomial matrix : Computational aspects , 1983 .

[14]  V. Mehrmann,et al.  Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods , 2004 .

[15]  Volker Mehrmann,et al.  Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations , 2006, SIAM J. Matrix Anal. Appl..

[16]  Jr. G. Forney,et al.  Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .

[17]  Peter Lancaster,et al.  Lambda-matrices and vibrating systems , 2002 .

[18]  F. M. Dopico,et al.  LINEARIZATIONS OF SINGULAR MATRIX POLYNOMIALS AND THE RECOVERY OF MINIMAL INDICES , 2009 .

[19]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[20]  M. Bueno,et al.  Eigenvectors and minimal bases for some families of Fiedler-like linearizations , 2014 .

[21]  S. Furtado,et al.  Palindromic linearizations of a matrix polynomial of odd degreee obtained from Fiedler pencils with repetition , 2012 .

[22]  Nicholas J. Higham,et al.  A framework for analyzing nonlinear eigenproblems and parametrized linear systems , 2011 .

[23]  Javier Pérez,et al.  Constructing Strong Linearizations of Matrix Polynomials Expressed in Chebyshev Bases , 2017, SIAM J. Matrix Anal. Appl..

[24]  Paul Van Dooren,et al.  A Framework for Structured Linearizations of Matrix Polynomials in Various Bases , 2016, SIAM J. Matrix Anal. Appl..

[25]  W. Wolovich State-space and multivariable theory , 1972 .

[26]  Efstathios N. Antoniou,et al.  A permuted factors approach for the linearization of polynomial matrices , 2011, Math. Control. Signals Syst..

[27]  Froilán M. Dopico,et al.  Recovery of Eigenvectors and Minimal Bases of Matrix Polynomials from Generalized Fiedler Linearizations , 2011, SIAM J. Matrix Anal. Appl..

[28]  Nicholas J. Higham,et al.  The Conditioning of Linearizations of Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[29]  Miroslav Fiedler,et al.  A note on companion matrices , 2003 .

[30]  Froilán M. Dopico,et al.  Spectral equivalence of matrix polynomials and the index sum theorem , 2014 .

[31]  Karl Meerbergen,et al.  Compact Two-Sided Krylov Methods for Nonlinear Eigenvalue Problems , 2018, SIAM J. Sci. Comput..

[32]  Paul Van Dooren,et al.  Block Kronecker linearizations of matrix polynomials and their backward errors , 2017, Numerische Mathematik.

[33]  Froilán M. Dopico,et al.  Large vector spaces of block-symmetric strong linearizations of matrix polynomials , 2015 .

[34]  Raf Vandebril,et al.  Efficient Ehrlich–Aberth iteration for finding intersections of interpolating polynomials and rational functions , 2017 .

[35]  P. Dooren The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .

[36]  Wim Michiels,et al.  Compact Rational Krylov Methods for Nonlinear Eigenvalue Problems , 2015, SIAM J. Matrix Anal. Appl..

[37]  Nikta Shayanfar,et al.  Symmetric and skew-symmetric block-Kronecker linearizations , 2016, 1606.01766.

[38]  Froilán M. Dopico,et al.  Palindromic companion forms for matrix polynomials of odd degree , 2011, J. Comput. Appl. Math..

[39]  Volker Mehrmann,et al.  Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[40]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[41]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.