Optimization and pole assignment in control system design

Some elementary optimization techniques, together with some not so well-known robustness measures and condition numbers, will be utilized in pole assignment. In particular, “Method 0” by Kautsky et al. (1985) for optimal selection of vectors is shown to be convergent to a local minimum, with respect to the condition number 1 2 ‖X‖2F − ln | detX|. This contrasts with the misconception by Kautsky et al. that the method diverges, or the recent discovery by Yang and Tits (1995) that the method converges to stationary points.

[1]  S. P. Bhattacharyya,et al.  Robust and Well Conditioned Eigenstructure Assignment via Sylvester's Equation , 1982, 1982 American Control Conference.

[2]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[3]  Sk Katti,et al.  Pole placement in multi-input systems via elementary transformations , 1983 .

[4]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[5]  C. Paige Properties of numerical algorithms related to computing controllability , 1981 .

[6]  Sun Ji-guang On numerical methods for robust pole assignment in control system design (11) , 1987 .

[7]  Henry Wolkowicz,et al.  Measures for Symmetric Rank-One Updates , 1994, Math. Oper. Res..

[8]  Y. Saad Projection and deflation method for partial pole assignment in linear state feedback , 1988 .

[9]  J. O'Reilly,et al.  On eigenstructure assignment in linear multivariable systems , 1982 .

[10]  R. Fletcher Practical Methods of Optimization , 1988 .

[11]  H. Kimura Pole assignment by gain output feedback , 1975 .

[12]  K. Chu,et al.  Generalization of the Bauer-Fike theorem , 1986 .

[13]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[14]  A. Tits,et al.  Globally convergent algorithms for robust pole assignment by state feedback , 1996, IEEE Trans. Autom. Control..

[15]  H. Kimura A further result on the problem of pole assignment by output feedback , 1977 .

[16]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[17]  V. Gourishankar,et al.  Pole assignment with minimum eigenvalue sensitivity to plant parameter variations , 1976 .

[18]  Roger Fletcher,et al.  Practical methods of optimization; (2nd ed.) , 1987 .

[19]  Tosio Kato Estimation of Iterated Matrices, with application to the von Neumann condition , 1960 .

[20]  M. M. Fahmy,et al.  Multistage parametric eigenstructure assignment by output-feedback control , 1988 .

[21]  K.-W.E. Chu A controllability condensed form and a state feedback pole assignment algorithm for descriptor systems , 1988 .

[22]  Biswa Nath Datta,et al.  Numerically robust pole assignment for second-order systems , 1996 .

[23]  Y. Saad,et al.  Arnoldi methods for large Sylvester-like observer matrix equations, and an associated algorithm for partial spectrum assignment , 1991 .

[24]  N. Nichols,et al.  Robust pole assignment in linear state feedback , 1985 .

[25]  Andrzej Cichocki,et al.  Neural networks for optimization and signal processing , 1993 .

[26]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[27]  Francesco Crusca Bilinear Matrix Inequalities in Robust Control: Phase I - Problem Formulation , 2003 .

[28]  Eric K-W Chu POLE ASSIGNMENT FOR SECOND-ORDER SYSTEMS , 2002 .

[29]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[30]  K W E Chu A pole-assignment algorithm for linear state feedback , 1986 .

[31]  Suresh M. Joshi,et al.  Control of Large Flexible Space Structures , 1989 .

[32]  A. Varga Numerically stable algorithm for standard controllability form determination , 1981 .

[33]  K. Chu Approximate pole assignment , 1993 .

[34]  J. Dennis,et al.  Sizing and least-change secant methods , 1993 .

[35]  Yaguang Yang,et al.  On Robust Pole Assignment by State Feedback , 1993, 1993 American Control Conference.

[36]  P. Petkov,et al.  A computational algorithm for pole assignment of linear multi-input systems , 1984, The 23rd IEEE Conference on Decision and Control.

[37]  Alan J. Laub,et al.  Placing plenty of poles is pretty preposterous , 1998 .

[38]  J. Pearson Linear multivariable control, a geometric approach , 1977 .

[39]  Ka Kit Cheung Neural networks for optimization , 2001 .

[40]  C. Paige,et al.  An algorithm for pole assignment of time invariant linear systems , 1982 .

[41]  K. Chu,et al.  Designing the Hopfield neural network via pole assignment , 1994 .

[42]  Petko H. Petkov,et al.  A computational algorithm for pole assignment of linear single-input systems , 1984 .

[43]  William L. Brogan,et al.  Applications of a determinant identity to pole-placement and observer problems , 1974 .

[44]  E.Y. Shapiro,et al.  Eigenstructure Assignment for Linear Systems , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[45]  S. Nash,et al.  Approaches to robust pole assignment , 1989 .

[46]  C. Paige,et al.  An algorithm for pole assignment of time invariant multi-input linear systems , 1982, 1982 21st IEEE Conference on Decision and Control.

[47]  B A White,et al.  Eigenstructure Assignment: A Survey , 1995 .

[48]  S. Bhattacharyya,et al.  Pole assignment via Sylvester's equation , 1982 .

[49]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[50]  W. Wonham Linear Multivariable Control: A Geometric Approach , 1974 .

[51]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[52]  George Miminis,et al.  A direct algorithm for pole assignment of time-invariant multi-input linear systems using state feedback , 1988, Autom..

[53]  Levent Tunçel,et al.  On the convergence of primal-dual interior-point methods with wide neighborhoods , 1995, Comput. Optim. Appl..

[54]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[55]  Ji-Guang Sun,et al.  Perturbation Analysis of the Pole Assignment Problem , 1996, SIAM J. Matrix Anal. Appl..

[56]  William C. Davidon,et al.  Optimally conditioned optimization algorithms without line searches , 1975, Math. Program..

[57]  G. Klein,et al.  Eigenvalue-generalized eigenvector assignment with state feedback , 1977 .

[58]  A. Varga A Schur method for pole assignment , 1981 .

[59]  Marvin Marcus,et al.  An inequality connecting theP-condition number and the determinant , 1962 .

[60]  M. M. Fahmy,et al.  Parametric eigenstructure assignment by output-feedback control: the case of multiple eigenvalues , 1988 .